{"title":"Faster dieback of rainforests altering tropical carbon sinks under climate change","authors":"Debashis Nath, Reshmita Nath, Wen Chen","doi":"10.1038/s41612-024-00793-0","DOIUrl":null,"url":null,"abstract":"Carbon sinks in the tropical rainforests are restricting the global warming to attain unprecedented heights. However, deforestation and climate change is switching them to a net carbon source at some of the deforested patches. Using machine learning algorithm we predict that more than 50% of the tropical rainforests will undergo rapid “Savannisation”/transformation by the end of 21st century under high emission scenarios. Climate change projects ‘El Niño-like’ warming condition, which decreases precipitation in the rainforests and favors atmospheric dryness. In Central Amazonia vegetation degradation saturates the carbon sink and more than 25% of the rainforests will transform into a net carbon source due to increase in soil microbial respiration. This transition will accelerate if Eastern Pacific/Global temperature warms beyond 1.5◦K/2.3◦K (by 2050’s) and will undergo a steeper transit by ~2075 (2.45◦K/3.8◦K warming). This alteration will exacerbate global warming and has consequences for policies that are intended to stabilize Earth’s climate.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00793-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00793-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon sinks in the tropical rainforests are restricting the global warming to attain unprecedented heights. However, deforestation and climate change is switching them to a net carbon source at some of the deforested patches. Using machine learning algorithm we predict that more than 50% of the tropical rainforests will undergo rapid “Savannisation”/transformation by the end of 21st century under high emission scenarios. Climate change projects ‘El Niño-like’ warming condition, which decreases precipitation in the rainforests and favors atmospheric dryness. In Central Amazonia vegetation degradation saturates the carbon sink and more than 25% of the rainforests will transform into a net carbon source due to increase in soil microbial respiration. This transition will accelerate if Eastern Pacific/Global temperature warms beyond 1.5◦K/2.3◦K (by 2050’s) and will undergo a steeper transit by ~2075 (2.45◦K/3.8◦K warming). This alteration will exacerbate global warming and has consequences for policies that are intended to stabilize Earth’s climate.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.