Paige L. Graney , Michael Y. Chen , Ruth I. Wood , Christine K. Wagner
{"title":"Developmental 17-OHPC exposure disrupts behavior regulated by the mesocorticolimbic dopaminergic system in rats","authors":"Paige L. Graney , Michael Y. Chen , Ruth I. Wood , Christine K. Wagner","doi":"10.1016/j.pbb.2024.173886","DOIUrl":null,"url":null,"abstract":"<div><div>The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals with the intention of reducing preterm birth. Although there is evidence that 17-OHPC is likely transferred from mother to fetus, there is little information regarding the potential effects of 17-OHPC administration on behavioral and neural development in offspring. Neonatal 17-OHPC exposure disrupts the development of the mesocorticolimbic dopaminergic pathway and associated behaviors in rats. 17-OHPC exposure altered dopaminergic innervation of prelimbic medial prefrontal cortex (mPFC) in neonates and adolescents and altered performance in measures of decision-making, set-shifting, and reversal-learning tasks. The present study tested the effects of developmental 17-OHPC exposure on numerous cognitive behaviors mediated by the mesocorticolimbic dopaminergic system, such as decision-making in a delay discounting task, latent inhibition following conditioned taste aversion (CTA), and spatial memory in the Morris Water Maze (MWM). The present work also aimed to further investigate response omissions in rats exposed to 17-OHPC during development and the potential role of dopamine D2 receptor in altering omissions in a delay discounting task. 17-OHPC exposure rendered rats less sensitive to an Eticlopride-induced increase in omissions in a delay discounting task when compared to controls. Quinpirole flattened the discount curve in both groups but did not significantly affect omissions in 17-OHPC-exposed or control rats. Following CTA, sucrose-pre-exposed 17-OHPC-exposed rats demonstrated decreased latent inhibition when compared to controls. In Morris Water Maze testing, 17-OHPC-exposed rats did not differ from controls after the first day of testing or during probe testing. These results suggest that exposure to 17-OHPC altered aspects of decision-making and latent inhibition in adult male rats, without affecting performance in a measure of spatial learning and memory. Further, the insensitivity of 17-OHPC-exposed males to an Eticlopride-induced increase in omissions suggests a dysfunction in the D2 receptor following exposure to this clinically used synthetic progestin.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"245 ","pages":"Article 173886"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305724001801","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC), is administered to pregnant individuals with the intention of reducing preterm birth. Although there is evidence that 17-OHPC is likely transferred from mother to fetus, there is little information regarding the potential effects of 17-OHPC administration on behavioral and neural development in offspring. Neonatal 17-OHPC exposure disrupts the development of the mesocorticolimbic dopaminergic pathway and associated behaviors in rats. 17-OHPC exposure altered dopaminergic innervation of prelimbic medial prefrontal cortex (mPFC) in neonates and adolescents and altered performance in measures of decision-making, set-shifting, and reversal-learning tasks. The present study tested the effects of developmental 17-OHPC exposure on numerous cognitive behaviors mediated by the mesocorticolimbic dopaminergic system, such as decision-making in a delay discounting task, latent inhibition following conditioned taste aversion (CTA), and spatial memory in the Morris Water Maze (MWM). The present work also aimed to further investigate response omissions in rats exposed to 17-OHPC during development and the potential role of dopamine D2 receptor in altering omissions in a delay discounting task. 17-OHPC exposure rendered rats less sensitive to an Eticlopride-induced increase in omissions in a delay discounting task when compared to controls. Quinpirole flattened the discount curve in both groups but did not significantly affect omissions in 17-OHPC-exposed or control rats. Following CTA, sucrose-pre-exposed 17-OHPC-exposed rats demonstrated decreased latent inhibition when compared to controls. In Morris Water Maze testing, 17-OHPC-exposed rats did not differ from controls after the first day of testing or during probe testing. These results suggest that exposure to 17-OHPC altered aspects of decision-making and latent inhibition in adult male rats, without affecting performance in a measure of spatial learning and memory. Further, the insensitivity of 17-OHPC-exposed males to an Eticlopride-induced increase in omissions suggests a dysfunction in the D2 receptor following exposure to this clinically used synthetic progestin.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.