Alexis Poitrasson-Rivière PhD , Michael D. Vanderver MSA, CNMT , Tomoe Hagio PhD , Liliana Arida-Moody BS , Jonathan B. Moody PhD , Jennifer M. Renaud MSc , Edward P. Ficaro PhD , Venkatesh L. Murthy MD, PhD
{"title":"Automated deep learning segmentation of cardiac inflammatory FDG PET","authors":"Alexis Poitrasson-Rivière PhD , Michael D. Vanderver MSA, CNMT , Tomoe Hagio PhD , Liliana Arida-Moody BS , Jonathan B. Moody PhD , Jennifer M. Renaud MSc , Edward P. Ficaro PhD , Venkatesh L. Murthy MD, PhD","doi":"10.1016/j.nuclcard.2024.102052","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Fluorodeoxyglucose positron emission tomography (FDG PET) with suppression of myocardial glucose utilization plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets and myocardial segmentation enables consistent image scaling and quantification. However, such manual tasks are cumbersome. We developed a 3D U-Net deep-learning (DL) algorithm for automated myocardial segmentation in cardiac sarcoidosis FDG PET.</div></div><div><h3>Methods</h3><div>The DL model was trained on FDG PET scans from 316 patients with left ventricular contours derived from paired perfusion datasets. Qualitative analysis of clinical readability was performed to compare DL segmentation with the current automated method on a 50-patient test subset. Additionally, left ventricle displacement and angulation, as well as SUVmax sampling were compared with inter-user reproducibility results. A hybrid workflow was also investigated to accelerate study processing time.</div></div><div><h3>Results</h3><div>DL segmentation enhanced readability scores in over 90% of cases compared with the standard segmentation currently used in the software. DL segmentation performed similar to a trained technologist, surpassing standard segmentation for left ventricle displacement and angulation, as well as correlation of SUVmax. Using the DL segmentation as initial placement for manual segmentation significantly decreased the processing time.</div></div><div><h3>Conclusion</h3><div>A novel DL-based automated segmentation tool markedly improves processing of cardiac sarcoidosis FDG PET. This tool yields optimized splash display of sarcoidosis FDG PET datasets with no user input and offers significant processing time improvement for manual segmentation of such datasets.</div></div>","PeriodicalId":16476,"journal":{"name":"Journal of Nuclear Cardiology","volume":"42 ","pages":"Article 102052"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071358124007438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Fluorodeoxyglucose positron emission tomography (FDG PET) with suppression of myocardial glucose utilization plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets and myocardial segmentation enables consistent image scaling and quantification. However, such manual tasks are cumbersome. We developed a 3D U-Net deep-learning (DL) algorithm for automated myocardial segmentation in cardiac sarcoidosis FDG PET.
Methods
The DL model was trained on FDG PET scans from 316 patients with left ventricular contours derived from paired perfusion datasets. Qualitative analysis of clinical readability was performed to compare DL segmentation with the current automated method on a 50-patient test subset. Additionally, left ventricle displacement and angulation, as well as SUVmax sampling were compared with inter-user reproducibility results. A hybrid workflow was also investigated to accelerate study processing time.
Results
DL segmentation enhanced readability scores in over 90% of cases compared with the standard segmentation currently used in the software. DL segmentation performed similar to a trained technologist, surpassing standard segmentation for left ventricle displacement and angulation, as well as correlation of SUVmax. Using the DL segmentation as initial placement for manual segmentation significantly decreased the processing time.
Conclusion
A novel DL-based automated segmentation tool markedly improves processing of cardiac sarcoidosis FDG PET. This tool yields optimized splash display of sarcoidosis FDG PET datasets with no user input and offers significant processing time improvement for manual segmentation of such datasets.
期刊介绍:
Journal of Nuclear Cardiology is the only journal in the world devoted to this dynamic and growing subspecialty. Physicians and technologists value the Journal not only for its peer-reviewed articles, but also for its timely discussions about the current and future role of nuclear cardiology. Original articles address all aspects of nuclear cardiology, including interpretation, diagnosis, imaging equipment, and use of radiopharmaceuticals. As the official publication of the American Society of Nuclear Cardiology, the Journal also brings readers the latest information emerging from the Society''s task forces and publishes guidelines and position papers as they are adopted.