Justin N Tan , Keshav Ratra , Steven W Singer , Blake A Simmons , Shubhasish Goswami , Deepika Awasthi
{"title":"Methane to bioproducts: unraveling the potential of methanotrophs for biomanufacturing","authors":"Justin N Tan , Keshav Ratra , Steven W Singer , Blake A Simmons , Shubhasish Goswami , Deepika Awasthi","doi":"10.1016/j.copbio.2024.103210","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous increase in the world population, anthropogenic activities will generate more waste and create greenhouse gases such as methane, amplifying global warming. The biological conversion of methane into biochemicals is a sustainable solution to sequester and convert this greenhouse gas. Methanotrophic bacteria fulfill this role by utilizing methane as a feedstock while manufacturing various bioproducts. Recently, methanotrophs have made their mark in industrial biomanufacturing. However, unlike glucose-utilizing model organisms such as <em>Escherichia coli</em> and <em>Saccharomyces cerevisiae</em>, methanotrophs do not have established transformation methods and genetic tools, making these organisms challenging to engineer. Despite these challenges, recent advancements in methanotroph engineering demonstrate great promise, showcasing these C1-carbon-utilizing microbes as prospective hosts for bioproduction. This review discusses the recent developments and challenges in strain engineering, biomolecule production, and process development methodologies in the methanotroph field.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"90 ","pages":"Article 103210"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001460","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous increase in the world population, anthropogenic activities will generate more waste and create greenhouse gases such as methane, amplifying global warming. The biological conversion of methane into biochemicals is a sustainable solution to sequester and convert this greenhouse gas. Methanotrophic bacteria fulfill this role by utilizing methane as a feedstock while manufacturing various bioproducts. Recently, methanotrophs have made their mark in industrial biomanufacturing. However, unlike glucose-utilizing model organisms such as Escherichia coli and Saccharomyces cerevisiae, methanotrophs do not have established transformation methods and genetic tools, making these organisms challenging to engineer. Despite these challenges, recent advancements in methanotroph engineering demonstrate great promise, showcasing these C1-carbon-utilizing microbes as prospective hosts for bioproduction. This review discusses the recent developments and challenges in strain engineering, biomolecule production, and process development methodologies in the methanotroph field.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.