Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Minzheng Yang, Weibin Ren, Zenghui Jin, Erxiang Xu, Yang Shen
{"title":"Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass","authors":"Minzheng Yang, Weibin Ren, Zenghui Jin, Erxiang Xu, Yang Shen","doi":"10.1038/s41467-024-52791-8","DOIUrl":null,"url":null,"abstract":"<p>Polymer dielectrics play an irreplaceable role in electrostatic capacitors in modern electrical systems, and have been intensively studied with their polarization and breakdown strength (<i>E</i><sub>b</sub>) optimized for high discharged energy density (<i>U</i><sub>d</sub>) at elevated temperatures. Small molecules have been explored as fillers, yet they deteriorate thermal stability of matrix which limits their optimal loading to ~1 wt%. Herein, we develop a polymer blend dielectric consisting of common polyimide and a bifunctional dipolar glass polymer which are synthesized from two small molecule components with wide band-gap and large dipole moment. The bifunctional dipolar glass with large molecular weight not only maintains thermal stability of polymer blends even at a high loading of 10 wt%, but also induces substantial enhancement in polarization and <i>E</i><sub>b</sub> than any of individual components does, achieving an ultrahigh <i>U</i><sub>d</sub> of 8.34 J cm<sup>−3</sup> (150 °C) and 6.21 J cm<sup>−3</sup> (200 °C) with a charge-discharge efficiency of 90%.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52791-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer dielectrics play an irreplaceable role in electrostatic capacitors in modern electrical systems, and have been intensively studied with their polarization and breakdown strength (Eb) optimized for high discharged energy density (Ud) at elevated temperatures. Small molecules have been explored as fillers, yet they deteriorate thermal stability of matrix which limits their optimal loading to ~1 wt%. Herein, we develop a polymer blend dielectric consisting of common polyimide and a bifunctional dipolar glass polymer which are synthesized from two small molecule components with wide band-gap and large dipole moment. The bifunctional dipolar glass with large molecular weight not only maintains thermal stability of polymer blends even at a high loading of 10 wt%, but also induces substantial enhancement in polarization and Eb than any of individual components does, achieving an ultrahigh Ud of 8.34 J cm−3 (150 °C) and 6.21 J cm−3 (200 °C) with a charge-discharge efficiency of 90%.

Abstract Image

通过协同优化双极玻璃的带隙和极化,增强聚合物电介质的高温储能性能
聚合物电介质在现代电气系统的静电电容器中发挥着不可替代的作用,人们对其极化和击穿强度(Eb)进行了深入研究,以优化其在高温下的高放电能量密度(Ud)。小分子已被用作填充剂,但它们会降低基体的热稳定性,从而将最佳填充量限制在约 1 wt%。在此,我们开发了一种聚合物混合电介质,由普通聚酰亚胺和双功能偶极玻璃聚合物组成,后者由两种具有宽带隙和大偶极矩的小分子成分合成。具有大分子量的双功能偶极玻璃不仅能在聚合物混合物中保持热稳定性,即使在 10 wt% 的高负载条件下也能保持热稳定性,而且还能比任何单个成分大幅增强极化和 Eb,实现 8.34 J cm-3 (150 °C) 和 6.21 J cm-3 (200 °C) 的超高 Ud 值,充放电效率高达 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信