Kitaev honeycomb antiferromagnet in a field: quantum phase diagram for general spin

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Saeed S. Jahromi, Max Hörmann, Patrick Adelhardt, Sebastian Fey, Hooman Karamnejad, Román Orús, Kai Phillip Schmidt
{"title":"Kitaev honeycomb antiferromagnet in a field: quantum phase diagram for general spin","authors":"Saeed S. Jahromi, Max Hörmann, Patrick Adelhardt, Sebastian Fey, Hooman Karamnejad, Román Orús, Kai Phillip Schmidt","doi":"10.1038/s42005-024-01809-0","DOIUrl":null,"url":null,"abstract":"We use tensor-network methods and high-order linked-cluster expansions to explore the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field for general spin S values. Tensor network calculations for the pure Kitaev model confirm the absence of fluxes and spin-spin correlations beyond nearest neighbors, while revealing discrete orientational symmetry breaking for S ∈ 1, 3/2, 2, consistent with the semiclassical limit. An intermediate region between Kitaev phases and the high-field polarized phase is identified for all considered spin values, showing a sequence of potential phases characterized by distinct local magnetization patterns while the total magnetization increases smoothly as a function of the field. Linked-cluster expansions for the high-field zero-momentum gap and spectral weight indicate a quantum critical breakdown of the polarized phase, suggesting exotic physics at intermediate Kitaev couplings. The antiferromagnetic spin 1/2 Kitaev model is known to have an intermediate phase under a magnetic field before transitioning to a fully polarized state. However, the nature of this phase for higher spins remained unclear. This paper explores the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field using tensor-network methods and high-order linked cluster expansions, uncovering an intermediate phase with distinct local magnetization patterns across different spin values.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01809-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01809-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We use tensor-network methods and high-order linked-cluster expansions to explore the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field for general spin S values. Tensor network calculations for the pure Kitaev model confirm the absence of fluxes and spin-spin correlations beyond nearest neighbors, while revealing discrete orientational symmetry breaking for S ∈ 1, 3/2, 2, consistent with the semiclassical limit. An intermediate region between Kitaev phases and the high-field polarized phase is identified for all considered spin values, showing a sequence of potential phases characterized by distinct local magnetization patterns while the total magnetization increases smoothly as a function of the field. Linked-cluster expansions for the high-field zero-momentum gap and spectral weight indicate a quantum critical breakdown of the polarized phase, suggesting exotic physics at intermediate Kitaev couplings. The antiferromagnetic spin 1/2 Kitaev model is known to have an intermediate phase under a magnetic field before transitioning to a fully polarized state. However, the nature of this phase for higher spins remained unclear. This paper explores the quantum phase diagram of the antiferromagnetic Kitaev honeycomb model in a magnetic field using tensor-network methods and high-order linked cluster expansions, uncovering an intermediate phase with distinct local magnetization patterns across different spin values.

Abstract Image

场中的基塔耶夫蜂巢反铁磁体:一般自旋的量子相图
我们使用张量网络方法和高阶联簇展开来探索反铁磁基塔耶夫蜂巢模型在磁场中一般自旋 S 值的量子相图。对纯基塔耶夫模型的张量网络计算证实,在近邻之外不存在通量和自旋-自旋相关性,同时揭示了S ∈ 1, 3/2, 2的离散方向对称性破缺,这与半经典极限一致。在所有考虑的自旋值中,都确定了介于基塔耶夫相和高场极化相之间的中间区域,显示了一连串以独特的局部磁化模式为特征的势相,而总磁化则随着场的函数平滑增加。对高场零动量间隙和光谱权重的关联簇展开表明,极化相存在量子临界崩溃,暗示了中间基塔耶夫耦合的奇异物理学。众所周知,反铁磁自旋 1/2 基塔耶夫模型在过渡到完全极化态之前,在磁场作用下有一个中间阶段。然而,对于更高的自旋,这一阶段的性质仍不清楚。本文利用张量网络方法和高阶链接簇展开,探索了反铁磁性基塔耶夫蜂巢模型在磁场中的量子相图,发现了在不同自旋值下具有不同局部磁化模式的中间阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信