{"title":"One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart.","authors":"Kyoung Jin Lee, Jung Chan Lee","doi":"10.1088/1748-3190/ad839f","DOIUrl":null,"url":null,"abstract":"<p><p>Soft peristaltic pumps, which use soft ring actuators instead of mechanical pistons or rollers, offer advantages in transporting liquids with non-uniform solids, such as slurry, food, and sewage. Recent advances in 3D printing with flexible thermoplastic polyurethane (TPU) present the potential for single-step fabrication of these pumps, distinguished from handcrafted, multistep traditional silicone casting methods. However, because of the relatively high hardness of TPU, TPU-based soft peristaltic pumps contract insufficiently and thus cannot perform as well as silicone-based ones. Improving the performance is crucial for fully automated, one-step manufactured soft pumps to lead to industrial use. This study aims to enhance TPU-based soft pumps through bioinspired design. Specifically, it proposed a design inspired by embryonic tubular hearts, in contrast to previous studies that mimicked digestive tracts. The new design facilitated long-axis stretching of an elliptical lumen during non-concentric contractile motion, akin to embryonic tubular hearts. The design was optimized for ring actuators and pumps 3D-printed with shore hardness 85 A TPU filament. The ring actuator achieved over 99% lumen closure with the best designs. The soft pumps transported water at flow rates of up to 218 ml min<sup>-1</sup>and generated a maximum discharge pressure of 355 mm Hg, comparable to the performance of blood pumps used in continuous renal replacement therapy.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad839f","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft peristaltic pumps, which use soft ring actuators instead of mechanical pistons or rollers, offer advantages in transporting liquids with non-uniform solids, such as slurry, food, and sewage. Recent advances in 3D printing with flexible thermoplastic polyurethane (TPU) present the potential for single-step fabrication of these pumps, distinguished from handcrafted, multistep traditional silicone casting methods. However, because of the relatively high hardness of TPU, TPU-based soft peristaltic pumps contract insufficiently and thus cannot perform as well as silicone-based ones. Improving the performance is crucial for fully automated, one-step manufactured soft pumps to lead to industrial use. This study aims to enhance TPU-based soft pumps through bioinspired design. Specifically, it proposed a design inspired by embryonic tubular hearts, in contrast to previous studies that mimicked digestive tracts. The new design facilitated long-axis stretching of an elliptical lumen during non-concentric contractile motion, akin to embryonic tubular hearts. The design was optimized for ring actuators and pumps 3D-printed with shore hardness 85 A TPU filament. The ring actuator achieved over 99% lumen closure with the best designs. The soft pumps transported water at flow rates of up to 218 ml min-1and generated a maximum discharge pressure of 355 mm Hg, comparable to the performance of blood pumps used in continuous renal replacement therapy.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.