{"title":"Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysis.","authors":"Anup Mammen Oommen, Phillip Stafford, Lokesh Joshi","doi":"10.1038/s41526-024-00434-z","DOIUrl":null,"url":null,"abstract":"<p><p>Space exploration's advancement toward long-duration missions prompts intensified research on physiological effects. Despite adaptive physiological stability in some variables, persistent changes affect genome integrity, immune response, and cognitive function. Our study, utilizing multi-omics data from GeneLab, provides crucial insights investigating muscle atrophy during space mission. Leveraging NASA GeneLab's data resources, we apply systems biology-based analyses, facilitating comprehensive understanding and enabling meta-analysis. Through transcriptomics, we establish a reference profile of biological processes underlying muscle atrophy, crucial for intervention development. We emphasize the often-overlooked role of glycosylation in muscle atrophy. Our research sheds light on fundamental molecular mechanisms, bridging gaps between space research and terrestrial conditions. This study underscores the importance of interdisciplinary collaboration and data-sharing initiatives like GeneLab in advancing space medicine research.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"94"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00434-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Space exploration's advancement toward long-duration missions prompts intensified research on physiological effects. Despite adaptive physiological stability in some variables, persistent changes affect genome integrity, immune response, and cognitive function. Our study, utilizing multi-omics data from GeneLab, provides crucial insights investigating muscle atrophy during space mission. Leveraging NASA GeneLab's data resources, we apply systems biology-based analyses, facilitating comprehensive understanding and enabling meta-analysis. Through transcriptomics, we establish a reference profile of biological processes underlying muscle atrophy, crucial for intervention development. We emphasize the often-overlooked role of glycosylation in muscle atrophy. Our research sheds light on fundamental molecular mechanisms, bridging gaps between space research and terrestrial conditions. This study underscores the importance of interdisciplinary collaboration and data-sharing initiatives like GeneLab in advancing space medicine research.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.