Arman Peyravi, Emily Quecke, Elena Kosareva, Patricia Dolez, Alexander Doroshenko, Stephanie Smith, Bernadette Quemerais, Zaher Hashisho
{"title":"Evaluation of masks and mask material suitability for bioaerosol capture.","authors":"Arman Peyravi, Emily Quecke, Elena Kosareva, Patricia Dolez, Alexander Doroshenko, Stephanie Smith, Bernadette Quemerais, Zaher Hashisho","doi":"10.1080/15459624.2024.2394613","DOIUrl":null,"url":null,"abstract":"<p><p>Non-medical masks such as disposable non-medical, commercially produced cloth, and homemade masks are not regulated like surgical masks. Their performance, in terms of filtration efficiency and breathability, is variable and unreliable. This research provides a quantitative evaluation of various non-medical masks, assesses their fabrics' potential for the reduction of transmission of bioaerosols such as the SARS-CoV-2 virus, and compares them to surgical masks and N95 filtering facepiece respirators. Using a testing line with a NaCl challenge aerosol, four types of commercial reusable cloth masks, two types of disposable non-medical masks, three types of surgical or N95 masks, and seven types of commonly available materials were tested individually and in combinations. The testing line and procedure were adapted from the ASTM F2299-03: Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by Particulates Using Latex Spheres testing method used for testing surgical masks. Filtration efficiencies at 0.15 µm particle diameter at a face velocity of 25 cm/sec for commercial cloth masks, disposable non-medical masks, surgical masks, commercial mask combinations, and homemade combinations ranged from 16-29%, 39-76%, 91-97%, 51-95%, and 45-94%, respectively. The pressure drop results for the different masks and material combinations were all under 3 mm H<sub>2</sub>O/cm<sup>2</sup> except for one material configuration. This study builds on other research that looks at individual materials and masks by testing combinations alongside the individual masks and materials. With proper layering, household materials can achieve the filtration efficiency and low pressure drop requirements of surgical masks. The filtration capabilities of disposable and cloth mask fabrics vary considerably meaning that they are not a reliable or consistent facemask option, regardless of fit.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"709-720"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2394613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Non-medical masks such as disposable non-medical, commercially produced cloth, and homemade masks are not regulated like surgical masks. Their performance, in terms of filtration efficiency and breathability, is variable and unreliable. This research provides a quantitative evaluation of various non-medical masks, assesses their fabrics' potential for the reduction of transmission of bioaerosols such as the SARS-CoV-2 virus, and compares them to surgical masks and N95 filtering facepiece respirators. Using a testing line with a NaCl challenge aerosol, four types of commercial reusable cloth masks, two types of disposable non-medical masks, three types of surgical or N95 masks, and seven types of commonly available materials were tested individually and in combinations. The testing line and procedure were adapted from the ASTM F2299-03: Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by Particulates Using Latex Spheres testing method used for testing surgical masks. Filtration efficiencies at 0.15 µm particle diameter at a face velocity of 25 cm/sec for commercial cloth masks, disposable non-medical masks, surgical masks, commercial mask combinations, and homemade combinations ranged from 16-29%, 39-76%, 91-97%, 51-95%, and 45-94%, respectively. The pressure drop results for the different masks and material combinations were all under 3 mm H2O/cm2 except for one material configuration. This study builds on other research that looks at individual materials and masks by testing combinations alongside the individual masks and materials. With proper layering, household materials can achieve the filtration efficiency and low pressure drop requirements of surgical masks. The filtration capabilities of disposable and cloth mask fabrics vary considerably meaning that they are not a reliable or consistent facemask option, regardless of fit.
期刊介绍:
The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality.
The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.