Zhuoyu Gu , Weizheng Ding , Shuang Yuan , Youqiang Peng , Bo Dong , Yike Gu , Jing Li , Yitong Chen , Kailu Wang , Tianze Liu , Xiaodan Han , Yixin Li
{"title":"HNRNPD/MAD2L2 axis facilitates lung adenocarcinoma progression and is a potential prognostic biomarker","authors":"Zhuoyu Gu , Weizheng Ding , Shuang Yuan , Youqiang Peng , Bo Dong , Yike Gu , Jing Li , Yitong Chen , Kailu Wang , Tianze Liu , Xiaodan Han , Yixin Li","doi":"10.1016/j.cellsig.2024.111443","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Although progress has been made in the treatment of LAUD, the survival rate for patients remains poor. An in-depth grasp of the molecular pathways implicated in LUAD progression is vital for improving diagnosis and treatment strategies. This study aims to explore novel molecular mechanisms driving LUAD progression and identify new potential prognostic biomarkers for LAUD patients.</div></div><div><h3>Methods</h3><div>Based on mass spectrometry analysis of human LUAD tissues, HNRNPD and MAD2L2 were identified as potential key proteins involved in LUAD progression. Subsequently, the interplay between HNRNPD and MAD2L2 was examined through dual-luciferase reporter assays, RNA-seq analysis, and various molecular biology techniques. Ultimately, the role of the HNRNPD/MAD2L2 axis in LUAD advancement and its potential as a prognostic indicator were investigated utilizing LUAD specimens, cell lines, and xenograft mouse models.</div></div><div><h3>Results</h3><div>In human LAUD tissues and cell lines, elevated levels of HNRNPD and MAD2L2 proteins were discovered. It was determined that HNRNPD binds to the MAD2L2 promoter, forming a regulatory axis at the transcriptional level. Subsequently, both <em>in vitro</em> and <em>in vivo</em> data demonstrated that the downregulation of the HNRNPD/MAD2L2 axis inhibited LUAD progression, while this effect could be rescued by MAD2L2 upregulation. Conversely, the upregulation of the HNRNPD/MAD2L2 axis facilitated LUAD progression, and this outcome could be reversed by MAD2L2 knockdown. Mechanistically, the downregulation of HNRNPD suppressed the promoter activity and transcription of MAD2L2, thus inhibiting the PI3K/HIF1α/ANGPTL4 pathway and tumor angiogenesis. Finally, it was confirmed that LUAD patients with high levels of both HNRNPD and MAD2L2 exhibited the poorest prognosis. Therefore, the HNRNPD/MAD2L2 axis has been identified as a potential predictive indicator for LUAD patients.</div></div><div><h3>Conclusions</h3><div>The HNRNPD/MAD2L2 axis facilitates LUAD progression and serves as a potential prognostic biomarker.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824004169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Although progress has been made in the treatment of LAUD, the survival rate for patients remains poor. An in-depth grasp of the molecular pathways implicated in LUAD progression is vital for improving diagnosis and treatment strategies. This study aims to explore novel molecular mechanisms driving LUAD progression and identify new potential prognostic biomarkers for LAUD patients.
Methods
Based on mass spectrometry analysis of human LUAD tissues, HNRNPD and MAD2L2 were identified as potential key proteins involved in LUAD progression. Subsequently, the interplay between HNRNPD and MAD2L2 was examined through dual-luciferase reporter assays, RNA-seq analysis, and various molecular biology techniques. Ultimately, the role of the HNRNPD/MAD2L2 axis in LUAD advancement and its potential as a prognostic indicator were investigated utilizing LUAD specimens, cell lines, and xenograft mouse models.
Results
In human LAUD tissues and cell lines, elevated levels of HNRNPD and MAD2L2 proteins were discovered. It was determined that HNRNPD binds to the MAD2L2 promoter, forming a regulatory axis at the transcriptional level. Subsequently, both in vitro and in vivo data demonstrated that the downregulation of the HNRNPD/MAD2L2 axis inhibited LUAD progression, while this effect could be rescued by MAD2L2 upregulation. Conversely, the upregulation of the HNRNPD/MAD2L2 axis facilitated LUAD progression, and this outcome could be reversed by MAD2L2 knockdown. Mechanistically, the downregulation of HNRNPD suppressed the promoter activity and transcription of MAD2L2, thus inhibiting the PI3K/HIF1α/ANGPTL4 pathway and tumor angiogenesis. Finally, it was confirmed that LUAD patients with high levels of both HNRNPD and MAD2L2 exhibited the poorest prognosis. Therefore, the HNRNPD/MAD2L2 axis has been identified as a potential predictive indicator for LUAD patients.
Conclusions
The HNRNPD/MAD2L2 axis facilitates LUAD progression and serves as a potential prognostic biomarker.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.