Ghada Mostafa, Hamdi Mahmoud, Tarek Abd El-Hafeez, Mohamed E ElAraby
{"title":"The power of deep learning in simplifying feature selection for hepatocellular carcinoma: a review.","authors":"Ghada Mostafa, Hamdi Mahmoud, Tarek Abd El-Hafeez, Mohamed E ElAraby","doi":"10.1186/s12911-024-02682-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular Carcinoma (HCC) is a highly aggressive, prevalent, and deadly type of liver cancer. With the advent of deep learning techniques, significant advancements have been made in simplifying and optimizing the feature selection process.</p><p><strong>Objective: </strong>Our scoping review presents an overview of the various deep learning models and algorithms utilized to address feature selection for HCC. The paper highlights the strengths and limitations of each approach, along with their potential applications in clinical practice. Additionally, it discusses the benefits of using deep learning to identify relevant features and their impact on the accuracy and efficiency of diagnosis, prognosis, and treatment of HCC.</p><p><strong>Design: </strong>The review encompasses a comprehensive analysis of the research conducted in the past few years, focusing on the methodologies, datasets, and evaluation metrics adopted by different studies. The paper aims to identify the key trends and advancements in the field, shedding light on the promising areas for future research and development.</p><p><strong>Results: </strong>The findings of this review indicate that deep learning techniques have shown promising results in simplifying feature selection for HCC. By leveraging large-scale datasets and advanced neural network architectures, these methods have demonstrated improved accuracy and robustness in identifying predictive features.</p><p><strong>Conclusions: </strong>We analyze published studies to reveal the state-of-the-art HCC prediction and showcase how deep learning can boost accuracy and decrease false positives. But we also acknowledge the challenges that remain in translating this potential into clinical reality.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02682-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatocellular Carcinoma (HCC) is a highly aggressive, prevalent, and deadly type of liver cancer. With the advent of deep learning techniques, significant advancements have been made in simplifying and optimizing the feature selection process.
Objective: Our scoping review presents an overview of the various deep learning models and algorithms utilized to address feature selection for HCC. The paper highlights the strengths and limitations of each approach, along with their potential applications in clinical practice. Additionally, it discusses the benefits of using deep learning to identify relevant features and their impact on the accuracy and efficiency of diagnosis, prognosis, and treatment of HCC.
Design: The review encompasses a comprehensive analysis of the research conducted in the past few years, focusing on the methodologies, datasets, and evaluation metrics adopted by different studies. The paper aims to identify the key trends and advancements in the field, shedding light on the promising areas for future research and development.
Results: The findings of this review indicate that deep learning techniques have shown promising results in simplifying feature selection for HCC. By leveraging large-scale datasets and advanced neural network architectures, these methods have demonstrated improved accuracy and robustness in identifying predictive features.
Conclusions: We analyze published studies to reveal the state-of-the-art HCC prediction and showcase how deep learning can boost accuracy and decrease false positives. But we also acknowledge the challenges that remain in translating this potential into clinical reality.