Long-range conformational changes in the nucleotide-bound states of the DEAD-box helicase Vasa.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Luca Codutti, John P Kirkpatrick, Susanne Zur Lage, Teresa Carlomagno
{"title":"Long-range conformational changes in the nucleotide-bound states of the DEAD-box helicase Vasa.","authors":"Luca Codutti, John P Kirkpatrick, Susanne Zur Lage, Teresa Carlomagno","doi":"10.1016/j.bpj.2024.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>DEAD-box helicases use ATP to unwind short double-stranded RNA (dsRNA). The helicase core consists of two discrete domains, termed RecA_N and RecA_C. The nucleotide binding site is harbored in RecA_N, while both RecA_N and RecA_C are involved in RNA recognition and ATP hydrolysis. In the absence of nucleotides or RNA, RecA_N and RecA_C do not interact (\"open\" form of the enzyme). In the presence of both RNA and ATP the two domains come together (\"closed\" form), building the composite RNA binding site and stimulating ATP hydrolysis. Because of the different roles and thermodynamic properties of the ADP-bound and ATP-bound states in the catalytic cycle, the conformations of DEAD-box helicases in complex with ATP and ADP are assumed to be different. However, the available crystal structures do not recapitulate these supposed differences and show identical conformations of DEAD-box helicases independent of the identity of the bound nucleotide. Here, we use NMR to demonstrate that the conformations of the ATP- and ADP-bound forms of the DEAD-box helicase Vasa are indeed different, contrary to the results from x-ray crystallography. These differences do not relate to the populations of the open and closed forms, but are intrinsic to the RecA_N domain. NMR chemical shift analysis reveals the regions of RecA_N where the average conformations of Vasa-ADP and Vasa-ATP are most different and indicates that these differences may contribute to modulating the affinity of the two nucleotide-bound complexes for RNA substrates.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.10.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

DEAD-box helicases use ATP to unwind short double-stranded RNA (dsRNA). The helicase core consists of two discrete domains, termed RecA_N and RecA_C. The nucleotide binding site is harbored in RecA_N, while both RecA_N and RecA_C are involved in RNA recognition and ATP hydrolysis. In the absence of nucleotides or RNA, RecA_N and RecA_C do not interact ("open" form of the enzyme). In the presence of both RNA and ATP the two domains come together ("closed" form), building the composite RNA binding site and stimulating ATP hydrolysis. Because of the different roles and thermodynamic properties of the ADP-bound and ATP-bound states in the catalytic cycle, the conformations of DEAD-box helicases in complex with ATP and ADP are assumed to be different. However, the available crystal structures do not recapitulate these supposed differences and show identical conformations of DEAD-box helicases independent of the identity of the bound nucleotide. Here, we use NMR to demonstrate that the conformations of the ATP- and ADP-bound forms of the DEAD-box helicase Vasa are indeed different, contrary to the results from x-ray crystallography. These differences do not relate to the populations of the open and closed forms, but are intrinsic to the RecA_N domain. NMR chemical shift analysis reveals the regions of RecA_N where the average conformations of Vasa-ADP and Vasa-ATP are most different and indicates that these differences may contribute to modulating the affinity of the two nucleotide-bound complexes for RNA substrates.

DEAD-box 螺旋酶 Vasa 核苷酸结合态的长程构象变化。
DEAD-box 螺旋酶利用 ATP 解旋短双链 RNA(dsRNA)。螺旋酶核心由两个不同的结构域组成,分别称为 RecA_N 和 RecA_C。核苷酸结合位点位于 RecA_N,而 RecA_N 和 RecA_C 都参与 RNA 识别和 ATP 水解。在没有核苷酸或 RNA 的情况下,RecA_N 和 RecA_C 不发生相互作用(酶的 "开放 "形式)。在有 RNA 和 ATP 的情况下,这两个结构域会结合在一起("封闭 "形式),形成复合 RNA 结合位点并促进 ATP 的水解。由于 ADP 结合态和 ATP 结合态在催化循环中的作用和热力学性质不同,因此假定 DEAD-box 螺旋酶与 ATP 和 ADP 复合物的构象也不同。然而,现有的晶体结构并没有再现这些假定的差异,而是显示了 DEAD-box 螺旋酶的相同构象,与结合核苷酸的身份无关。在这里,我们利用核磁共振技术证明了与 ATP 和 ADP 结合的 DEAD-box 螺旋酶 Vasa 的构象确实不同,这与 X 射线晶体学的结果相反。这些差异与开放型和封闭型的群体无关,而是 RecA_N 结构域的固有差异。核磁共振化学位移分析揭示了 RecA_N 中 Vasa-ADP 和 Vasa-ATP 平均构象差异最大的区域,并表明这些差异可能有助于调节这两种核苷酸结合复合物对 RNA 底物的亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信