Harnessing high potential benzothiazole chalcones against dengue virus NS5 protein: A multi-faceted theoretical study through molecular docking, ADME, and DFT
{"title":"Harnessing high potential benzothiazole chalcones against dengue virus NS5 protein: A multi-faceted theoretical study through molecular docking, ADME, and DFT","authors":"","doi":"10.1016/j.abb.2024.110171","DOIUrl":null,"url":null,"abstract":"<div><div>Chalcones bearing tetralone, indanone and benzothiazole cores were synthesized successfully using a general Claisen-Schmidt condensation protocol. The prepared compounds were purified and structurally analyzed by <sup>1</sup>H, <sup>13</sup>C NMR, and FT-IR techniques. A multi-faceted theoretical approach, combining Density Functional Theory (DFT), molecular docking, and ADME predictions, was employed to evaluate their therapeutic potential. DFT calculations at the B3LYP/def2-TZVP level revealed key electronic properties, with TD3 compound demonstrating the highest chemical reactivity. Molecular Electrostatic Potential (MEP) and Reduced Density Gradient (RDG) analyses provided insights into the compounds' non-covalent interactions and charge distributions. Molecular docking studies against the NS5 protein (PDB: <span><span>6KR2</span><svg><path></path></svg></span>) showed superior binding affinities for all three compounds compared to the control ligand SAH, with TD3 exhibiting the lowest binding energy (−8.41 kcal/mol) and theoretical inhibition constant (689.31 nM). ADME predictions indicated favorable drug-like properties with concerns regarding aqueous solubility and potential P-glycoprotein interactions. Toxicity evaluations highlighted challenges, particularly in hepatotoxicity and carcinogenicity. The study identified TD3 as a promising lead compound for Dengue Virus NS5 inhibition, while also emphasizing the need for targeted modifications to address toxicity concerns. This research not only contributes to anti-dengue drug discovery efforts but also provides a robust methodological framework for the theoretical evaluation of similar small compounds in future investigations.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124002935","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chalcones bearing tetralone, indanone and benzothiazole cores were synthesized successfully using a general Claisen-Schmidt condensation protocol. The prepared compounds were purified and structurally analyzed by 1H, 13C NMR, and FT-IR techniques. A multi-faceted theoretical approach, combining Density Functional Theory (DFT), molecular docking, and ADME predictions, was employed to evaluate their therapeutic potential. DFT calculations at the B3LYP/def2-TZVP level revealed key electronic properties, with TD3 compound demonstrating the highest chemical reactivity. Molecular Electrostatic Potential (MEP) and Reduced Density Gradient (RDG) analyses provided insights into the compounds' non-covalent interactions and charge distributions. Molecular docking studies against the NS5 protein (PDB: 6KR2) showed superior binding affinities for all three compounds compared to the control ligand SAH, with TD3 exhibiting the lowest binding energy (−8.41 kcal/mol) and theoretical inhibition constant (689.31 nM). ADME predictions indicated favorable drug-like properties with concerns regarding aqueous solubility and potential P-glycoprotein interactions. Toxicity evaluations highlighted challenges, particularly in hepatotoxicity and carcinogenicity. The study identified TD3 as a promising lead compound for Dengue Virus NS5 inhibition, while also emphasizing the need for targeted modifications to address toxicity concerns. This research not only contributes to anti-dengue drug discovery efforts but also provides a robust methodological framework for the theoretical evaluation of similar small compounds in future investigations.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.