{"title":"Li-Sb Alloy Formation Strategy to Improve Interfacial Stability of All-Solid-State Lithium Batteries.","authors":"Berhanu Degagsa Dandena, Wei-Nien Su, Dah-Shyang Tsai, Yosef Nikodimos, Bereket Woldegbreal Taklu, Hailemariam Kassa Bezabh, Gidey Bahre Desta, Sheng-Chiang Yang, Keseven Lakshmanan, Hwo-Shuenn Sheu, Chia-Hsin Wang, She-Huang Wu, Bing Joe Hwang","doi":"10.1002/smtd.202400571","DOIUrl":null,"url":null,"abstract":"<p><p>The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC-P) to form Li-Sb alloy. The Li-Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long-term stability, and achieving the highest critical current density of 14.5 mA cm<sup>-2</sup> (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li-Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li-Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy-forming electrolytes for advanced solid-state batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400571"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400571","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte Li6PS5Cl (LPSC-P) to form Li-Sb alloy. The Li-Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long-term stability, and achieving the highest critical current density of 14.5 mA cm-2 (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li-Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li-Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy-forming electrolytes for advanced solid-state batteries.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.