Xiaojun Huang MD, Xin Fu PhD, Jingying Wu MD, Xin Cheng MD, Xiaoqi Hong PhD, Ziyi Li MD, Lan Zheng MD, Qing Liu PhD, Shendi Chen PhD, Beisha Tang PhD, Yuwu Zhao PhD, Xiaorong Liu PhD, Xunhua Li PhD, Xiaoli Liu MM, Zaiwei Zhou PhD, Li Wu PhD, Kan Fang MD, Ping Zhong MD, Mei Zhang PhD, Xinghua Luan PhD, Wotu Tian PhD, Xiaoping Tong PhD, Li Cao PhD
More than 60% of paroxysmal kinesigenic dyskinesia (PKD) cases are of uncertain variants.
Objective
The aim was to elucidate novel genetic contribution to PKD.
Methods
A total of 476 probands with uncertain genetic causes were enrolled for whole-exome sequencing. A method of case–control analysis was applied to identify the candidate genes. Whole-cell patch-clamp recording was applied to verify the electrophysiological impact of the identified variants. A mouse model with cerebellar heterozygous knockout of the candidate gene was developed via adeno-associated virus injection, and dystonia-like phenotype inducement and rotarod tests were performed. In vivo multiunit electrical recording was applied to investigate the change in neural excitability in knockout mice.
Results
Heterozygous variants of potassium inwardly rectifying channel subfamily J member 10 (KCNJ10) clustered in PKD patients were compared with those in the control groups. Fifteen variants were detected in 16 of 522 probands (frequency = 3.07%). Patients with KCNJ10 variants tended to have a milder manifestation compared to those with PRRT2 (proline-rich transmembrane protein 2) variants. KCNJ10 variants partially altered the transmembrane location of inwardly rectifying potassium channel 4.1 (Kir4.1). The Kcnj10 expression is consistent with the natural course of PKD. Variants resulted in different degrees of reduction in cell Kir4.1 currents, and mice with heterozygous conditional knockout of Kcnj10 in the cerebellum presented dystonic posture, together with poor motor coordination and motor learning ability in rotarod tests. The firing rate of deep cerebellar nuclei was significantly elevated in Kcnj10-cKO mice.
期刊介绍:
Movement Disorders publishes a variety of content types including Reviews, Viewpoints, Full Length Articles, Historical Reports, Brief Reports, and Letters. The journal considers original manuscripts on topics related to the diagnosis, therapeutics, pharmacology, biochemistry, physiology, etiology, genetics, and epidemiology of movement disorders. Appropriate topics include Parkinsonism, Chorea, Tremors, Dystonia, Myoclonus, Tics, Tardive Dyskinesia, Spasticity, and Ataxia.