{"title":"The Disturbance of Biocrusts Subsoil Stoichiometry by Grazing Could Not Compensate for Its Damage Effect","authors":"Jing Zhang, Qianwen Duan, Jie Ma, Fujiang Hou","doi":"10.1002/ldr.5280","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biocrusts play an essential role in maintaining ecosystem stability, which is common in arid and semi-arid areas. Although there have been some previous studies on the stoichiometry of biocrust subsoil in grazing systems, further research is needed to assess the effects of varying grazing intensities. Four grazing gradients were established to investigate the change mechanism of biocrust subsoil stoichiometry under grazing conditions, considering its seasonal response. These findings revealed that biocrusts' coverage and their chlorophyll content showed a parabolic trend of increasing and then decreasing with the increase in grazing intensity. At the same time, their standard response thresholds to grazing intensity ranged from 2.67 to 5.33 sheep/ha. Moreover, the premise that the biocrust is damaged by grazing trampling has become a consensus; our study found that the biocrust still played an important role, although its structure was destroyed because of its greenness (BG) increased. The influence of grazing intensity on the biocrust subsoil stoichiometry is unquestionable; in addition, they are influenced by a combination of vegetation (10% and 19%) and environmental influences (6% and 18%). Furthermore, it was observed that these changes did not compensate for the reproduction and development of biocrusts in grazing-induced trampling damage. In this study, the integrated consideration of biocrusts into the grazing system fully affirmed its essential role. Additionally, it clarified the pathways and effect of grazing on biocrusts subsoil stoichiometry, providing a new perspective and reference for developing grazing strategy on the Loess Plateau.</p>\n </div>","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"35 17","pages":"5078-5087"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ldr.5280","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biocrusts play an essential role in maintaining ecosystem stability, which is common in arid and semi-arid areas. Although there have been some previous studies on the stoichiometry of biocrust subsoil in grazing systems, further research is needed to assess the effects of varying grazing intensities. Four grazing gradients were established to investigate the change mechanism of biocrust subsoil stoichiometry under grazing conditions, considering its seasonal response. These findings revealed that biocrusts' coverage and their chlorophyll content showed a parabolic trend of increasing and then decreasing with the increase in grazing intensity. At the same time, their standard response thresholds to grazing intensity ranged from 2.67 to 5.33 sheep/ha. Moreover, the premise that the biocrust is damaged by grazing trampling has become a consensus; our study found that the biocrust still played an important role, although its structure was destroyed because of its greenness (BG) increased. The influence of grazing intensity on the biocrust subsoil stoichiometry is unquestionable; in addition, they are influenced by a combination of vegetation (10% and 19%) and environmental influences (6% and 18%). Furthermore, it was observed that these changes did not compensate for the reproduction and development of biocrusts in grazing-induced trampling damage. In this study, the integrated consideration of biocrusts into the grazing system fully affirmed its essential role. Additionally, it clarified the pathways and effect of grazing on biocrusts subsoil stoichiometry, providing a new perspective and reference for developing grazing strategy on the Loess Plateau.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.