Averaging Functions on Triangular Fuzzy Numbers and an Application in Graphs

IF 10.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nicolás Zumelzu;Roberto Díaz;Aldryn Aparcana;José Canumán;Álvaro Mella;Edmundo Mansilla;Diego Soto;Benjamín Bedregal
{"title":"Averaging Functions on Triangular Fuzzy Numbers and an Application in Graphs","authors":"Nicolás Zumelzu;Roberto Díaz;Aldryn Aparcana;José Canumán;Álvaro Mella;Edmundo Mansilla;Diego Soto;Benjamín Bedregal","doi":"10.1109/TFUZZ.2024.3473791","DOIUrl":null,"url":null,"abstract":"Admissible orders on fuzzy numbers are total orders, which refine a basic and well-known partial order on fuzzy numbers. In this work, we define an admissible order on triangular fuzzy numbers (i.e., \n<inline-formula><tex-math>$\\operatorname{TFN}$</tex-math></inline-formula>\n’s) and study some fundamental properties with its arithmetic and their relation with this admissible order. We also propose a new hyperstructure for ordered vector spaces and, in particular, consider the case of \n<inline-formula><tex-math>$\\operatorname{TFN}$</tex-math></inline-formula>\n. In addition, we also introduce the concepts of averaging functions on \n<inline-formula><tex-math>$\\operatorname{TFN}$</tex-math></inline-formula>\n, with emphasis on ordered weighted averaging functions on \n<inline-formula><tex-math>$\\operatorname{TFN}$</tex-math></inline-formula>\n equipped with an admissible order. Finally, the problem of joining central vertices is presented with an illustrative example where the previous concept is used.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"32 12","pages":"7025-7036"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704958/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Admissible orders on fuzzy numbers are total orders, which refine a basic and well-known partial order on fuzzy numbers. In this work, we define an admissible order on triangular fuzzy numbers (i.e., $\operatorname{TFN}$ ’s) and study some fundamental properties with its arithmetic and their relation with this admissible order. We also propose a new hyperstructure for ordered vector spaces and, in particular, consider the case of $\operatorname{TFN}$ . In addition, we also introduce the concepts of averaging functions on $\operatorname{TFN}$ , with emphasis on ordered weighted averaging functions on $\operatorname{TFN}$ equipped with an admissible order. Finally, the problem of joining central vertices is presented with an illustrative example where the previous concept is used.
三角模糊数的平均函数及其在图形中的应用
模糊数上的容许阶是全阶,它细化了模糊数上一个基本的、众所周知的偏阶。在本文中,我们定义了三角模糊数(即$\operatorname{TFN}$’s)上的一个可容许阶,并研究了其算术的一些基本性质及其与该可容许阶的关系。我们还提出了有序向量空间的一种新的超结构,并特别考虑了$\operatorname{TFN}$的情况。此外,我们还引入了$\operatorname{TFN}$上的平均函数的概念,重点讨论了$\operatorname{TFN}$上具有可容许阶的有序加权平均函数。最后,通过一个使用前面概念的示例,给出了连接中心顶点的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信