Chad T. Palumbo, Erik T. Ouellette, Jie Zhu, Yuriy Román-Leshkov, Shannon S. Stahl, Gregg T. Beckham
{"title":"Accessing monomers from lignin through carbon–carbon bond cleavage","authors":"Chad T. Palumbo, Erik T. Ouellette, Jie Zhu, Yuriy Román-Leshkov, Shannon S. Stahl, Gregg T. Beckham","doi":"10.1038/s41570-024-00652-9","DOIUrl":null,"url":null,"abstract":"Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C–O bond cleavage, given the abundance of β–O–4 bonds in lignin and the large number of available C–O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C–C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C–C cleavage reactions, including those of linkages arising from biosynthesis (β–1, β–5, β–β and 5–5) and industrial processing (5–CH2–5 and α–5). We examine multiple approaches to C–C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C–C bond cleavage. To date, monomer yields from lignin are limited to those attainable through C–O bond cleavage. Cleaving C–C bonds often leads to deleterious product degradation and low monomer yields. Herein we review lignin C–C cleavage reports and advocate for a standardized reporting of yields.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 11","pages":"799-816"},"PeriodicalIF":38.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-024-00652-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C–O bond cleavage, given the abundance of β–O–4 bonds in lignin and the large number of available C–O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C–C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C–C cleavage reactions, including those of linkages arising from biosynthesis (β–1, β–5, β–β and 5–5) and industrial processing (5–CH2–5 and α–5). We examine multiple approaches to C–C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C–C bond cleavage. To date, monomer yields from lignin are limited to those attainable through C–O bond cleavage. Cleaving C–C bonds often leads to deleterious product degradation and low monomer yields. Herein we review lignin C–C cleavage reports and advocate for a standardized reporting of yields.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.