Mudalige Don Hiranya Jayasanka Senavirathna, Zumulati Maimaiti
{"title":"Assessing the biochemical and genotoxic effects of low intensity 2.45GHz microwave exposure on <i>Arabidopsis thaliana</i> plants.","authors":"Mudalige Don Hiranya Jayasanka Senavirathna, Zumulati Maimaiti","doi":"10.1080/15368378.2024.2411629","DOIUrl":null,"url":null,"abstract":"<p><p>The electromagnetic waves of 2.45 GHz microwave frequency have become abundant in environments worldwide. This study assessed the short-term impact of low-intensity 2.45 GHz exposure on young <i>Arabidopsis thaliana</i> plants. The plants underwent a 48-hour exposure to continuous wave 2.45 GHz microwaves at a power density of 1.0 ± 0.1 W m<sup>-2</sup>. Experiments were conducted inside anechoic chambers. After the microwave exposure samples were subjected to morphological, genotoxicity, pigmentation, and physiochemical analysis. Microwave exposure elevated the levels of photosynthetic pigments, oxidative stress, guaiacol peroxidase activity, and ascorbic peroxidase activity in plants. Conversely, catalase activity decreased. Photosystem efficiency remained unchanged, while non-photochemical quenching increased. Leaf morphological parameters exhibited no significant alterations during this brief exposure period. Notably, despite shifts in physiological parameters and pigmentations, genomic template stability remained unaffected. The findings suggest that the non-thermal effects of microwave exposure influence the photosystem and plant physiology. Research confirmed the existence of non-thermal effects of microwave exposure; however, these effects are within tolerable limits for <i>Arabidopsis thaliana</i> plants.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"303-311"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2411629","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The electromagnetic waves of 2.45 GHz microwave frequency have become abundant in environments worldwide. This study assessed the short-term impact of low-intensity 2.45 GHz exposure on young Arabidopsis thaliana plants. The plants underwent a 48-hour exposure to continuous wave 2.45 GHz microwaves at a power density of 1.0 ± 0.1 W m-2. Experiments were conducted inside anechoic chambers. After the microwave exposure samples were subjected to morphological, genotoxicity, pigmentation, and physiochemical analysis. Microwave exposure elevated the levels of photosynthetic pigments, oxidative stress, guaiacol peroxidase activity, and ascorbic peroxidase activity in plants. Conversely, catalase activity decreased. Photosystem efficiency remained unchanged, while non-photochemical quenching increased. Leaf morphological parameters exhibited no significant alterations during this brief exposure period. Notably, despite shifts in physiological parameters and pigmentations, genomic template stability remained unaffected. The findings suggest that the non-thermal effects of microwave exposure influence the photosystem and plant physiology. Research confirmed the existence of non-thermal effects of microwave exposure; however, these effects are within tolerable limits for Arabidopsis thaliana plants.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.