High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils.

IF 6.5 2区 医学 Q1 IMMUNOLOGY
Oncoimmunology Pub Date : 2024-10-02 eCollection Date: 2024-01-01 DOI:10.1080/2162402X.2024.2411070
Alexander Emmanuelli, Camilla Salvagno, Sung-Min Hwang, Deepika Awasthi, Tito A Sandoval, Chang-Suk Chae, Jin-Gyu Cheong, Chen Tan, Takao Iwawaki, Juan R Cubillos-Ruiz
{"title":"High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils.","authors":"Alexander Emmanuelli, Camilla Salvagno, Sung-Min Hwang, Deepika Awasthi, Tito A Sandoval, Chang-Suk Chae, Jin-Gyu Cheong, Chen Tan, Takao Iwawaki, Juan R Cubillos-Ruiz","doi":"10.1080/2162402X.2024.2411070","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2024.2411070","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.

中性粒细胞中的IRE1α活性驱动了高级别浆液性卵巢癌的发展和抗PD-1的耐药性。
高级别重度卵巢癌(HGSOC)是一种侵袭性恶性肿瘤,对目前的免疫疗法仍有耐药性。虽然晚期疾病已被广泛研究,但促进 HGSOC 早期免疫逃逸的细胞和分子机制在很大程度上仍未被探索。在这里,我们报告了原发性HGSO肿瘤通过激活内质网(ER)应激传感器IRE1α,使中性粒细胞抑制T细胞的抗肿瘤功能。我们发现,与非肿瘤部位的中性粒细胞相比,瘤内中性粒细胞表现出过度激活ER应激反应标记物。选择性地删除中性粒细胞中的IRE1α可延缓原发性卵巢肿瘤的生长,并通过早期T细胞介导的肿瘤控制延长HGSOC小鼠的生存期。值得注意的是,中性粒细胞中 IRE1α 的缺失会使肿瘤小鼠对 PD-1 阻滞剂敏感,从而诱导 HGSOC 消退,并使约 50% 的受试宿主长期存活。因此,中性粒细胞内在的IRE1α有助于HGSOC早期适应性免疫逃逸,靶向这种ER应激传感器可用于释放内源性免疫和免疫疗法诱导的免疫,从而控制转移性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncoimmunology
Oncoimmunology ONCOLOGYIMMUNOLOGY-IMMUNOLOGY
CiteScore
12.50
自引率
2.80%
发文量
276
审稿时长
24 weeks
期刊介绍: OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy. As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology. The journal covers a wide range of topics, including: -Basic and translational studies in immunology of both solid and hematological malignancies -Inflammation, innate and acquired immune responses against cancer -Mechanisms of cancer immunoediting and immune evasion -Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells -Immunological effects of conventional anticancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信