Huixing Kang, Yuan Yu, Xinran Ke, Hajime Tomimatsu, Dongliang Xiong, Louis Santiago, Qingmin Han, Reki Kardiman, Yanhong Tang
{"title":"Initial stomatal conductance increases photosynthetic induction of trees leaves more from sunlit than from shaded environments: A meta-analysis.","authors":"Huixing Kang, Yuan Yu, Xinran Ke, Hajime Tomimatsu, Dongliang Xiong, Louis Santiago, Qingmin Han, Reki Kardiman, Yanhong Tang","doi":"10.1093/treephys/tpae128","DOIUrl":null,"url":null,"abstract":"<p><p>It has long been held that tree species/leaves from shaded environments show faster rate of photosynthetic induction than species/leaves from sunlit environments. But the evidence so far is conflicting and the underlying mechanisms are still under debate. To address the debate, we compiled a dataset for 87 tree species and compared the initial increasing slope during the first 2-minute induction (SA) and stomatal and biochemical characteristics between sun and shade species from the same study, and those between sun and shade leaves within the same species. In 77% of between-species comparisons, the species with high steady-state photosynthetic rate in the high light (Af) exhibited a larger SA than the species with low Af. In 67% within-species comparisons, the sun leaves exhibited a larger SA than the shade leaves. However, in only a few instances did the sun species/leaves more rapidly achieve 50% of full induction, with an even smaller SA, than the shade species/leaves. At both the species and leaf level, SA increased with increasing initial stomatal conductance before induction (gsi). Despite exhibiting reduced intrinsic water use efficiency in low light, a large SA proportionally enhances photosynthetic carbon gain during the first 2-minute induction in the sun species and leaves. Thus, in terms of the increase in absolute rate of photosynthesis, tree species/leaves from sunlit environments display faster photosynthetic induction responses than those from shaded environments. Our results call for re-consideration of contrasting photosynthetic strategies in photosynthetic adaption/acclimation to dynamic light environments across species.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae128","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
It has long been held that tree species/leaves from shaded environments show faster rate of photosynthetic induction than species/leaves from sunlit environments. But the evidence so far is conflicting and the underlying mechanisms are still under debate. To address the debate, we compiled a dataset for 87 tree species and compared the initial increasing slope during the first 2-minute induction (SA) and stomatal and biochemical characteristics between sun and shade species from the same study, and those between sun and shade leaves within the same species. In 77% of between-species comparisons, the species with high steady-state photosynthetic rate in the high light (Af) exhibited a larger SA than the species with low Af. In 67% within-species comparisons, the sun leaves exhibited a larger SA than the shade leaves. However, in only a few instances did the sun species/leaves more rapidly achieve 50% of full induction, with an even smaller SA, than the shade species/leaves. At both the species and leaf level, SA increased with increasing initial stomatal conductance before induction (gsi). Despite exhibiting reduced intrinsic water use efficiency in low light, a large SA proportionally enhances photosynthetic carbon gain during the first 2-minute induction in the sun species and leaves. Thus, in terms of the increase in absolute rate of photosynthesis, tree species/leaves from sunlit environments display faster photosynthetic induction responses than those from shaded environments. Our results call for re-consideration of contrasting photosynthetic strategies in photosynthetic adaption/acclimation to dynamic light environments across species.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.