Eduardo R Butelman, Yuefeng Huang, Flurin Cathomas, Pierre-Olivier Gaudreault, Panos Roussos, Scott J Russo, Rita Z Goldstein, Nelly Alia-Klein
{"title":"Serum cytokines and inflammatory proteins in individuals with heroin use disorder: potential mechanistically based biomarkers for diagnosis.","authors":"Eduardo R Butelman, Yuefeng Huang, Flurin Cathomas, Pierre-Olivier Gaudreault, Panos Roussos, Scott J Russo, Rita Z Goldstein, Nelly Alia-Klein","doi":"10.1038/s41398-024-03119-z","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid use disorders cause major morbidity and mortality, and there is a pressing need for novel mechanistic targets and biomarkers for diagnosis and prognosis. Exposure to mu-opioid receptor (MOR) agonists causes changes in cytokine and inflammatory protein networks in peripheral blood, and also in brain glia and neurons. Individuals with heroin use disorder (iHUD) show dysregulated levels of several cytokines in the blood. However, there is limited data on a comprehensive panel of such markers in iHUD versus healthy controls (HC), especially considered as a multi-target biomarker. We used a validated proximity extension assay for the relative quantification of 92 cytokines and inflammatory proteins in the serum of iHUD on medication-assisted therapy (MAT; n = 21), compared to HC (n = 24). Twenty-nine targets showed significant group differences (primarily iHUD>HC), surviving multiple comparison corrections (p = 0.05). These targets included 19 members of canonical cytokine families, including specific chemokines, interleukins, growth factors, and tumor necrosis factor (TNF)-related proteins. For dimensionality reduction, data from these 19 cytokines were entered into a principal component (PC) analysis, with PC1 scores showing significant group differences (iHUD > HC; p < 0.0001). A receiver-operating characteristic (ROC) curve analysis yielded an AUROC = 91.7% (p < 0.0001). This PC1 score remained a positive predictor of being in the HUD group in a multivariable logistic regression, that included select demographic/clinical variables. Overall, this study shows a panel of cytokines that differ significantly between iHUD and HC, providing a multi-target \"cytokine biomarker score\" for potential diagnostic purposes, and future examination of disease severity.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"414"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03119-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Opioid use disorders cause major morbidity and mortality, and there is a pressing need for novel mechanistic targets and biomarkers for diagnosis and prognosis. Exposure to mu-opioid receptor (MOR) agonists causes changes in cytokine and inflammatory protein networks in peripheral blood, and also in brain glia and neurons. Individuals with heroin use disorder (iHUD) show dysregulated levels of several cytokines in the blood. However, there is limited data on a comprehensive panel of such markers in iHUD versus healthy controls (HC), especially considered as a multi-target biomarker. We used a validated proximity extension assay for the relative quantification of 92 cytokines and inflammatory proteins in the serum of iHUD on medication-assisted therapy (MAT; n = 21), compared to HC (n = 24). Twenty-nine targets showed significant group differences (primarily iHUD>HC), surviving multiple comparison corrections (p = 0.05). These targets included 19 members of canonical cytokine families, including specific chemokines, interleukins, growth factors, and tumor necrosis factor (TNF)-related proteins. For dimensionality reduction, data from these 19 cytokines were entered into a principal component (PC) analysis, with PC1 scores showing significant group differences (iHUD > HC; p < 0.0001). A receiver-operating characteristic (ROC) curve analysis yielded an AUROC = 91.7% (p < 0.0001). This PC1 score remained a positive predictor of being in the HUD group in a multivariable logistic regression, that included select demographic/clinical variables. Overall, this study shows a panel of cytokines that differ significantly between iHUD and HC, providing a multi-target "cytokine biomarker score" for potential diagnostic purposes, and future examination of disease severity.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.