{"title":"Mitochondrial dysfunction in diabetic neuropathy: Impaired mitophagy triggers NLRP3 inflammasome","authors":"Keshari Sriwastawa, Ashutosh Kumar","doi":"10.1016/j.mito.2024.101972","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic neuropathy is one of the challenging complications of diabetes and is characterized by peripheral nerve damage due to hyperglycemia in diabetes. Mitochondrial dysfunction has been reported as one of the key pathophysiological factor contributing to nerve damage in diabetic neuropathy, clinically manifesting as neurodegenerative changes like functional and sensorimotor deficits. Accumulating evidence suggests a clear correlation between mitochondrial dysfunction and NLRP3 inflammasome activation. Unraveling deeper molecular aspects of mitochondrial dysfunction may provide safer and effective therapeutic alternatives. This review links mitochondrial dysfunction and appraises its role in the pathophysiology of diabetic neuropathy. We have also tried to delineate the role of mitophagy in NLRP3 inflammasome activation in experimental diabetic neuropathy.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"79 ","pages":"Article 101972"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724924001302","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic neuropathy is one of the challenging complications of diabetes and is characterized by peripheral nerve damage due to hyperglycemia in diabetes. Mitochondrial dysfunction has been reported as one of the key pathophysiological factor contributing to nerve damage in diabetic neuropathy, clinically manifesting as neurodegenerative changes like functional and sensorimotor deficits. Accumulating evidence suggests a clear correlation between mitochondrial dysfunction and NLRP3 inflammasome activation. Unraveling deeper molecular aspects of mitochondrial dysfunction may provide safer and effective therapeutic alternatives. This review links mitochondrial dysfunction and appraises its role in the pathophysiology of diabetic neuropathy. We have also tried to delineate the role of mitophagy in NLRP3 inflammasome activation in experimental diabetic neuropathy.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.