Downregulation of microRNA‑221‑3p promotes angiogenesis of lipoprotein(a)‑injured endothelial progenitor cells by targeting silent information regulator 1 to activate the RAF/MEK/ERK signaling pathway.
Xiaolei Zhang, Shizhen Wang, Yongting Qin, Hang Guo
{"title":"Downregulation of microRNA‑221‑3p promotes angiogenesis of lipoprotein(a)‑injured endothelial progenitor cells by targeting silent information regulator 1 to activate the RAF/MEK/ERK signaling pathway.","authors":"Xiaolei Zhang, Shizhen Wang, Yongting Qin, Hang Guo","doi":"10.3892/mmr.2024.13347","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to investigate the role of microRNA (miR)‑221‑3p in endothelial progenitor cells (EPCs) treated with lipoprotein(a) [LP(a)]. EPCs were identified using immunofluorescence assays and miR‑221‑3p levels were measured using reverse transcription‑quantitative PCR. EPC migration was detected using Transwell assays, proliferation was measured by staining with 5‑ethynyl‑2'‑deoxyuridine and adhesion was assessed by microscopy. Flow cytometry was used to measure apoptosis and protein expression was detected using western blotting. A dual‑luciferase reporter assay was used to confirm the target interactions. The proliferation, migration, adhesion and angiogenesis of EPCs were decreased, and apoptosis was increased after treatment with LP(a). These effects were weakened by transfection with miR‑221‑3p inhibitor. The negative effects of LP(a) on EPCs were also weakened by overexpression of silent information regulator 1 (SIRT1). Inhibition of the RAF/MEK/ERK signaling pathway blocked the effects of SIRT1 overexpression. In conclusion, miR‑221‑3p inhibitor transfection activated the RAF/MEK/ERK signaling pathway through SIRT1, promoted the proliferation, migration, adhesion and angiogenesis of EPCs, and reduced apoptosis.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to investigate the role of microRNA (miR)‑221‑3p in endothelial progenitor cells (EPCs) treated with lipoprotein(a) [LP(a)]. EPCs were identified using immunofluorescence assays and miR‑221‑3p levels were measured using reverse transcription‑quantitative PCR. EPC migration was detected using Transwell assays, proliferation was measured by staining with 5‑ethynyl‑2'‑deoxyuridine and adhesion was assessed by microscopy. Flow cytometry was used to measure apoptosis and protein expression was detected using western blotting. A dual‑luciferase reporter assay was used to confirm the target interactions. The proliferation, migration, adhesion and angiogenesis of EPCs were decreased, and apoptosis was increased after treatment with LP(a). These effects were weakened by transfection with miR‑221‑3p inhibitor. The negative effects of LP(a) on EPCs were also weakened by overexpression of silent information regulator 1 (SIRT1). Inhibition of the RAF/MEK/ERK signaling pathway blocked the effects of SIRT1 overexpression. In conclusion, miR‑221‑3p inhibitor transfection activated the RAF/MEK/ERK signaling pathway through SIRT1, promoted the proliferation, migration, adhesion and angiogenesis of EPCs, and reduced apoptosis.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.