Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nazanin Kianinejad, Reza Razeghifard, Hossein H Omidian, Yadollah Omidi, Young M Kwon
{"title":"Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A<sub>2</sub>.","authors":"Nazanin Kianinejad, Reza Razeghifard, Hossein H Omidian, Yadollah Omidi, Young M Kwon","doi":"10.1080/08982104.2024.2410748","DOIUrl":null,"url":null,"abstract":"<p><p>Vesicular nanocarriers like niosomes and liposomes are widely researched for controlled drug delivery systems, with niosomes emerging as promising alternatives due to their higher stability and ease of manufacturing. This study aimed to develop and characterize a niosomal formulation for the encapsulation and sustained release of temozolomide (TMZ), a model lipophilic drug, and to compare the stability of niosomes and liposomes, with a particular focus on the behavior of their lipid bilayers. Niosomes were prepared using the thin-film hydration method, composed of Span 60 (Sorbitan monostearate), cholesterol, and soy lecithin in varying molar ratios. The study investigated critical properties such as drug loading capacity, release kinetics, and resistance to enzymatic degradation. The optimized formulation was analyzed for drug entrapment efficiency and stability against phospholipase A<sub>2</sub> (PLA<sub>2</sub>) degradation. The optimized niosomal formulation, with a 4:2:1 molar ratio of Span 60: cholesterol, achieved a high TMZ entrapment efficiency of 73.23 ± 1.02% and demonstrated sustained drug release over 24 hours. In comparison, liposomes released their TMZ payload within 4 hours upon exposure to PLA<sub>2</sub>, while the niosomes maintained their release profile, indicating superior stability. Spectroscopic and thermal analysis confirmed successful drug encapsulation with no component incompatibilities.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2024.2410748","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vesicular nanocarriers like niosomes and liposomes are widely researched for controlled drug delivery systems, with niosomes emerging as promising alternatives due to their higher stability and ease of manufacturing. This study aimed to develop and characterize a niosomal formulation for the encapsulation and sustained release of temozolomide (TMZ), a model lipophilic drug, and to compare the stability of niosomes and liposomes, with a particular focus on the behavior of their lipid bilayers. Niosomes were prepared using the thin-film hydration method, composed of Span 60 (Sorbitan monostearate), cholesterol, and soy lecithin in varying molar ratios. The study investigated critical properties such as drug loading capacity, release kinetics, and resistance to enzymatic degradation. The optimized formulation was analyzed for drug entrapment efficiency and stability against phospholipase A2 (PLA2) degradation. The optimized niosomal formulation, with a 4:2:1 molar ratio of Span 60: cholesterol, achieved a high TMZ entrapment efficiency of 73.23 ± 1.02% and demonstrated sustained drug release over 24 hours. In comparison, liposomes released their TMZ payload within 4 hours upon exposure to PLA2, while the niosomes maintained their release profile, indicating superior stability. Spectroscopic and thermal analysis confirmed successful drug encapsulation with no component incompatibilities.

用于递送亲脂模型药物的niosomes的制备和表征:与针对磷脂酶-A2的脂质体的稳定性比较研究。
纳米囊泡载体(如niosomes和脂质体)被广泛用于研究药物的控制释放系统,其中niosomes因其较高的稳定性和易于制造而成为有前途的替代品。本研究旨在开发和表征一种用于包裹和持续释放亲脂性药物模型替莫唑胺(TMZ)的niosomal制剂,并比较niosomes和脂质体的稳定性,尤其关注它们的脂质双层膜的行为。研究人员采用薄膜水合法制备了由不同摩尔比的司盘 60(山梨糖醇单硬脂酸酯)、胆固醇和大豆卵磷脂组成的 Niosomes。研究调查了药物负载能力、释放动力学和抗酶降解能力等关键特性。对优化配方进行了药物夹带效率和抗磷脂酶 A2(PLA2)降解稳定性分析。优化后的niosomal配方中,Span 60与胆固醇的摩尔比为4:2:1,TMZ的包载效率高达73.23±1.02%,并能在24小时内持续释放药物。相比之下,脂质体在暴露于 PLA2 后 4 小时内就释放了 TMZ 有效载荷,而niosomes 则保持了其释放曲线,表明其稳定性更佳。光谱分析和热分析证实,药物封装成功,各成分之间没有不相容之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信