Hasan H Öz, Cassia L Braga, Ravindra Gudneppanavar, Caterina Di Pietro, Pamela H Huang, Ping-Xia Zhang, Diane S Krause, Marie E Egan, Thomas S Murray, Emanuela M Bruscia
{"title":"CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and Cystic Fibrosis mice.","authors":"Hasan H Öz, Cassia L Braga, Ravindra Gudneppanavar, Caterina Di Pietro, Pamela H Huang, Ping-Xia Zhang, Diane S Krause, Marie E Egan, Thomas S Murray, Emanuela M Bruscia","doi":"10.1093/jleuko/qiae218","DOIUrl":null,"url":null,"abstract":"<p><p>Extravasation of CCR2-positive monocytes into tissue and to the site of injury is a fundamental immunological response to infections. Nevertheless, exuberant recruitment and/or activity of these monocytes and monocyte-derived macrophages can propagate tissue damage, especially in chronic inflammatory disease conditions. We have previously shown that inhibiting the recruitment of CCR2-positive monocytes ameliorates lung tissue damage caused by chronic neutrophilic inflammation in cystic fibrosis (CF) mouse models. A potential concern with targeting monocyte recruitment for therapeutic benefit in CF, however, is whether they are essential for eradicating infections such as Pseudomonas aeruginosa (PA), a pathogen that commonly colonizes and damages the lungs of patients with CF. In this study, we investigated the role of CCR2-positive monocytes in the immune response to acute pulmonary PA infection. Our data show that the altered host immune response caused by the lack of monocyte recruitment to the lungs does not impact PA lung colonization, clearance, and the severity of the infection. These results also hold up in a CF mouse background, which have a hyper-inflammatory immune response, yet exhibit reduced bactericidal activity. Thus, we lay the groundwork for future studies to investigate the use of CCR2 inhibitors as a potential therapy to ameliorate lung tissue damage in CF. This could be given alone or as an adjunct therapy with CFTR modulators that significantly improve clinical outcomes for eligible patients, but do not completely resolve the persistent infection and inflammation that drive lung tissue damage.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extravasation of CCR2-positive monocytes into tissue and to the site of injury is a fundamental immunological response to infections. Nevertheless, exuberant recruitment and/or activity of these monocytes and monocyte-derived macrophages can propagate tissue damage, especially in chronic inflammatory disease conditions. We have previously shown that inhibiting the recruitment of CCR2-positive monocytes ameliorates lung tissue damage caused by chronic neutrophilic inflammation in cystic fibrosis (CF) mouse models. A potential concern with targeting monocyte recruitment for therapeutic benefit in CF, however, is whether they are essential for eradicating infections such as Pseudomonas aeruginosa (PA), a pathogen that commonly colonizes and damages the lungs of patients with CF. In this study, we investigated the role of CCR2-positive monocytes in the immune response to acute pulmonary PA infection. Our data show that the altered host immune response caused by the lack of monocyte recruitment to the lungs does not impact PA lung colonization, clearance, and the severity of the infection. These results also hold up in a CF mouse background, which have a hyper-inflammatory immune response, yet exhibit reduced bactericidal activity. Thus, we lay the groundwork for future studies to investigate the use of CCR2 inhibitors as a potential therapy to ameliorate lung tissue damage in CF. This could be given alone or as an adjunct therapy with CFTR modulators that significantly improve clinical outcomes for eligible patients, but do not completely resolve the persistent infection and inflammation that drive lung tissue damage.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.