{"title":"AKR7A5 knockout promote acute liver injury by inducing inflammatory response, oxidative stress and apoptosis in mice","authors":"Hui Shi, Wenda Xu, Qingling Liu, Yan Li, Silin Dong, Zhenjun Zhao","doi":"10.1111/jcmm.70129","DOIUrl":null,"url":null,"abstract":"<p>Alcohol liver disease has become a worldwide critical health problem. The ingested alcohol could be converted into acetaldehyde or combined with free fatty acids to induce the endoplasmic reticulum oxidative stress in the liver. Coincidentally, AKR7A5 has both aldehyde detoxification and antioxidant effects. Therefore, we discuss the possible role and mechanism of AKR7A5 in the acute alcohol injury of mice liver. There were four experiment groups, the C57BL/6 mice of wild-type mice (WT) or AKR7A5−/− mice (KO) were intragastrically administrated with saline or 50% ethanol at 14 mL/kg, respectively. Compared to the WT + alcohol group, abnormal liver function, disordered hepatic cord, severe congestion in the hepatic sinus and the space of the hepatic cord, occurrence of oxidative stress, DNA damage and different expressions of apoptosis-related proteins were detected in the KO + alcohol group. Meanwhile, the biological process enrichment analysis showed that the down-regulated proteins were related to the metabolism of fatty acid, the up-regulated proteins positive regulation of reactive oxygen species metabolic process, negative regulation of coagulation and haemostasis. In conclusion, single ethanol binge combined with the absence of AKR7A5 caused more severe inflammatory response, oxidative stress, apoptosis of endogenous pathways, abnormal lipids metabolism and disordered coagulation in mice liver.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 19","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol liver disease has become a worldwide critical health problem. The ingested alcohol could be converted into acetaldehyde or combined with free fatty acids to induce the endoplasmic reticulum oxidative stress in the liver. Coincidentally, AKR7A5 has both aldehyde detoxification and antioxidant effects. Therefore, we discuss the possible role and mechanism of AKR7A5 in the acute alcohol injury of mice liver. There were four experiment groups, the C57BL/6 mice of wild-type mice (WT) or AKR7A5−/− mice (KO) were intragastrically administrated with saline or 50% ethanol at 14 mL/kg, respectively. Compared to the WT + alcohol group, abnormal liver function, disordered hepatic cord, severe congestion in the hepatic sinus and the space of the hepatic cord, occurrence of oxidative stress, DNA damage and different expressions of apoptosis-related proteins were detected in the KO + alcohol group. Meanwhile, the biological process enrichment analysis showed that the down-regulated proteins were related to the metabolism of fatty acid, the up-regulated proteins positive regulation of reactive oxygen species metabolic process, negative regulation of coagulation and haemostasis. In conclusion, single ethanol binge combined with the absence of AKR7A5 caused more severe inflammatory response, oxidative stress, apoptosis of endogenous pathways, abnormal lipids metabolism and disordered coagulation in mice liver.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.