Exploring the Relationship Between Gene Expression and Low-Frequency Somatic Mutations in Arabidopsis with Duplex Sequencing.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Gus Waneka, Braden Pate, J Grey Monroe, Daniel B Sloan
{"title":"Exploring the Relationship Between Gene Expression and Low-Frequency Somatic Mutations in Arabidopsis with Duplex Sequencing.","authors":"Gus Waneka, Braden Pate, J Grey Monroe, Daniel B Sloan","doi":"10.1093/gbe/evae213","DOIUrl":null,"url":null,"abstract":"<p><p>Intragenomic mutation rates can vary dramatically due to transcription-associated mutagenesis or transcription-coupled repair, which vary based on local epigenomic modifications that are nonuniformly distributed across genomes. One feature associated with decreased mutation is higher expression level, which depends on environmental cues. To understand the magnitude of expression-dependent mutation rate variation, we perturbed expression through a heat treatment in Arabidopsis thaliana. We quantified gene expression to identify differentially expressed genes, which we then targeted for mutation detection using duplex sequencing. This approach provided a highly accurate measurement of the frequency of rare somatic mutations in vegetative plant tissues, which has been a recent source of uncertainty. Somatic mutations in plants may be useful for understanding drivers of DNA damage and repair in the germline since plants experience late germline segregation and both somatic and germline cells share common repair machinery. We included mutant lines lacking mismatch repair (MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may drive biased mutation accumulation. We found wild-type (WT) and BER mutant mutation frequencies to be very low (mean variant frequency 1.8 × 10-8 and 2.6 × 10-8, respectively), while MMR mutant frequencies were significantly elevated (1.13 × 10-6). Interestingly, in the MMR mutant lines, there was no difference in the somatic mutation frequencies between temperature treatments or between highly versus lowly expressed genes. The extremely low somatic variant frequencies in WT plants indicate that larger datasets will be needed to address fundamental evolutionary questions about whether environmental change leads to gene-specific changes in mutation rate.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae213","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intragenomic mutation rates can vary dramatically due to transcription-associated mutagenesis or transcription-coupled repair, which vary based on local epigenomic modifications that are nonuniformly distributed across genomes. One feature associated with decreased mutation is higher expression level, which depends on environmental cues. To understand the magnitude of expression-dependent mutation rate variation, we perturbed expression through a heat treatment in Arabidopsis thaliana. We quantified gene expression to identify differentially expressed genes, which we then targeted for mutation detection using duplex sequencing. This approach provided a highly accurate measurement of the frequency of rare somatic mutations in vegetative plant tissues, which has been a recent source of uncertainty. Somatic mutations in plants may be useful for understanding drivers of DNA damage and repair in the germline since plants experience late germline segregation and both somatic and germline cells share common repair machinery. We included mutant lines lacking mismatch repair (MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may drive biased mutation accumulation. We found wild-type (WT) and BER mutant mutation frequencies to be very low (mean variant frequency 1.8 × 10-8 and 2.6 × 10-8, respectively), while MMR mutant frequencies were significantly elevated (1.13 × 10-6). Interestingly, in the MMR mutant lines, there was no difference in the somatic mutation frequencies between temperature treatments or between highly versus lowly expressed genes. The extremely low somatic variant frequencies in WT plants indicate that larger datasets will be needed to address fundamental evolutionary questions about whether environmental change leads to gene-specific changes in mutation rate.

利用双工测序技术探索拟南芥基因表达与低频体细胞突变之间的关系。
基因组内的突变率会因转录相关诱变或转录耦合修复而发生巨大变化,这取决于基因组中分布不均的局部表观基因组修饰。与突变减少相关的一个特征是表达水平较高,这取决于环境线索。为了了解表达依赖性突变率变化的程度,我们通过热处理扰乱了拟南芥的表达。我们对基因表达进行了量化,以确定差异表达的基因,然后利用双链测序技术对这些基因进行突变检测。这种方法能高度准确地测量植物无性组织中罕见体细胞突变的频率,而这正是最近不确定性的来源。植物中的体细胞突变可能有助于了解种系中 DNA 损伤和修复的驱动因素,因为植物的种系分离较晚,而且体细胞和种系细胞共享共同的修复机制。我们纳入了缺乏错配修复(MMR)和碱基切除修复(BER)能力的突变株,以了解修复机制是如何驱动偏向突变积累的。我们发现野生型(WT)和碱基切除修复(BER)突变频率非常低(平均变异频率分别为 1.8´10-8 和 2.6´10-8 ),而 MMR 突变频率显著升高(1.13´10-6)。有趣的是,在 MMR 突变株系中,不同温度处理或高表达基因与低表达基因之间的体细胞变异频率没有差异。WT 植物的体细胞变异频率极低,这表明需要更大的数据集来解决环境变化是否会导致基因突变率特异性变化的基本进化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信