Emma Kristine Beard, Rachael P. Norris, Miki Furusho, Mark Terasaki, Mayu Inaba
{"title":"Soma-to-germline BMP signal is essential for Drosophila spermiogenesis","authors":"Emma Kristine Beard, Rachael P. Norris, Miki Furusho, Mark Terasaki, Mayu Inaba","doi":"10.1016/j.ydbio.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>In the <em>Drosophila</em> testis, developing germ cells are encapsulated by somatic support cells throughout development. Soma-germline interactions are essential for successful spermiogenesis. However, it is still not fully understood what signaling events take place between the soma and the germline. In this study, we found that a Bone Morphogenetic Protein (BMP) ligand, Glass bottom boat (Gbb), secreted from somatic cyst cells (CCs), signals to differentiating germ cells to maintain proper spermiogenesis. Knockdown of Gbb in CCs or the type I BMP receptor Saxophone (Sax) in germ cells leads to a defect in sperm head bundling and decreased fertility. Our Transmission Electron Microscopy (TEM) analyses revealed that the mutant germ cells have aberrant morphology of mitochondria throughout the stages of spermiogenesis and exhibit a defect in nebenkern formation. Elongating spermatids show uncoupled nuclei and elongating mitochondrial derivatives, suggesting that improper mitochondrial development may cause sperm bundling defects. Taken together, we propose a new role of soma-derived BMP signaling, which is essential for spermiogenesis.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 140-147"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the Drosophila testis, developing germ cells are encapsulated by somatic support cells throughout development. Soma-germline interactions are essential for successful spermiogenesis. However, it is still not fully understood what signaling events take place between the soma and the germline. In this study, we found that a Bone Morphogenetic Protein (BMP) ligand, Glass bottom boat (Gbb), secreted from somatic cyst cells (CCs), signals to differentiating germ cells to maintain proper spermiogenesis. Knockdown of Gbb in CCs or the type I BMP receptor Saxophone (Sax) in germ cells leads to a defect in sperm head bundling and decreased fertility. Our Transmission Electron Microscopy (TEM) analyses revealed that the mutant germ cells have aberrant morphology of mitochondria throughout the stages of spermiogenesis and exhibit a defect in nebenkern formation. Elongating spermatids show uncoupled nuclei and elongating mitochondrial derivatives, suggesting that improper mitochondrial development may cause sperm bundling defects. Taken together, we propose a new role of soma-derived BMP signaling, which is essential for spermiogenesis.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.