Deciphering electrocatalytic hydrogen production in water through a bioinspired water-stable copper(II) complex adorned with (N2S2)-donor sites.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-10-04 DOI:10.1002/cssc.202401089
Bhaskar Biswas, Sangharaj Diyali, Subhajit Saha, Nilankar Diyali, Avantika Bhattacharjee, Abhishek Mallick, Suraj Kumar Agrawalla, Chandra Shekhar Purohit
{"title":"Deciphering electrocatalytic hydrogen production in water through a bioinspired water-stable copper(II) complex adorned with (N2S2)-donor sites.","authors":"Bhaskar Biswas, Sangharaj Diyali, Subhajit Saha, Nilankar Diyali, Avantika Bhattacharjee, Abhishek Mallick, Suraj Kumar Agrawalla, Chandra Shekhar Purohit","doi":"10.1002/cssc.202401089","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic hydrogen production stands as a pivotal cornerstone in ushering the revolutionary era of the hydrogen economy. With a keen focus on emulating the significance of hydrogenase-like active sites in sustainable H2 generation, a meticulously designed and water-stable copper(II) complex, [Cl-Cu-LN2S2]ClO4, featuring the N,S-type ligand, LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine), has been crafted and assessed for its prowess in electrocatalytic H2 production in water, leveraging acetic acid as a proton source. The molecular catalyst, adopting a square pyramidal coordination geometry, undergoes -Cl substitution by H2O during electrochemical conditions yielding [H2O-Cu-LN2S2]2+ as the true catalyst, showcases outstanding activity in electrochemical proton reduction in acidic water, achieving an impressive rate of 241.75 s-1 for hydrogen generation. Controlled potential electrolysis at -1.2 V vs. Ag/AgCl for 1.6 h reveals a high turnover number of 73.06 with a commendable Faradic efficiency of 94.2%. A comprehensive analysis encompassing electrochemical, spectroscopic, and analytical methods reveals an insignificant degradation of the molecular catalyst. However, the post-CPE electrocatalyst, present in the solution domain, signifies the coveted stability and effective activity under the specified electrochemical conditions. The synergy of electrochemical, spectroscopic, and computational studies endorses the proton-electron coupling mediated catalytic pathways, affirming the viability of sustainable hydrogen production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401089","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic hydrogen production stands as a pivotal cornerstone in ushering the revolutionary era of the hydrogen economy. With a keen focus on emulating the significance of hydrogenase-like active sites in sustainable H2 generation, a meticulously designed and water-stable copper(II) complex, [Cl-Cu-LN2S2]ClO4, featuring the N,S-type ligand, LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine), has been crafted and assessed for its prowess in electrocatalytic H2 production in water, leveraging acetic acid as a proton source. The molecular catalyst, adopting a square pyramidal coordination geometry, undergoes -Cl substitution by H2O during electrochemical conditions yielding [H2O-Cu-LN2S2]2+ as the true catalyst, showcases outstanding activity in electrochemical proton reduction in acidic water, achieving an impressive rate of 241.75 s-1 for hydrogen generation. Controlled potential electrolysis at -1.2 V vs. Ag/AgCl for 1.6 h reveals a high turnover number of 73.06 with a commendable Faradic efficiency of 94.2%. A comprehensive analysis encompassing electrochemical, spectroscopic, and analytical methods reveals an insignificant degradation of the molecular catalyst. However, the post-CPE electrocatalyst, present in the solution domain, signifies the coveted stability and effective activity under the specified electrochemical conditions. The synergy of electrochemical, spectroscopic, and computational studies endorses the proton-electron coupling mediated catalytic pathways, affirming the viability of sustainable hydrogen production.

通过缀有 (N2S2) 供体位点的生物启发水稳定铜 (II) 复合物,解密水中的电催化制氢。
电催化制氢是开创氢经济革命时代的重要基石。为了模仿类似氢化酶的活性位点在可持续制氢中的重要作用,我们精心设计了一种水稳定的铜(II)配合物 [Cl-Cu-LN2S2]ClO4 ,其特征是 N. S 型配体 LN2S2(2,2'-((丁烷-2-二烷基))、LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine)) 为特征的 N、S 型配体。该分子催化剂采用方形金字塔配位几何结构,在电化学条件下会被 H2O 取代 -Cl,生成真正的催化剂 [H2O-Cu-LN2S2]2+,在酸性水的电化学质子还原过程中表现出卓越的活性,制氢速率达到惊人的 241.75 s-1。在 -1.2 V 对 Ag/AgCl 条件下进行 1.6 小时的受控电势电解显示出 73.06 的高周转次数和 94.2% 的法拉第效率。包括电化学、光谱和分析方法在内的综合分析表明,分子催化剂的降解并不明显。然而,在特定电化学条件下,存在于溶液领域的后 CPE 电催化剂具有梦寐以求的稳定性和有效活性。电化学、光谱和计算研究的协同作用认可了质子-电子耦合介导的催化途径,肯定了可持续制氢的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信