João F Stival, Camila N Cechin, Bernardo A Iglesias, Ernesto S Lang, Júlio S Rebouças, Shirley Nakagaki
{"title":"ZnO with Different Morphologies Sensitized by Metalloporphyrins as Catalysts for H<sub>2</sub> Production by Water Splitting Under Sunlight.","authors":"João F Stival, Camila N Cechin, Bernardo A Iglesias, Ernesto S Lang, Júlio S Rebouças, Shirley Nakagaki","doi":"10.1002/asia.202401011","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, zinc oxide with different morphologies and textural properties were prepared and sensitized with metalloporphyrins (MPs) aiming to improve its solar energy harvesting capability for H<sub>2</sub> production by water splitting under sunlight (a 300 W Xe/Hg lamp). An anionic iron(III)porphyrin and a cationic manganese(III)porphyrin were immobilized on different ZnO solids predominantly by electrostatic interactions. In general, the prepared MP-free ZnO solid yielded modest catalytic results which had apparently no direct correlation with their textural properties or morphology. On the other hand, when these ZnO solids had iron or manganese porphyrin sensitizing them, their catalytic performances changed and a superior yield towards H<sub>2</sub> production was observed in comparison to the pure ZnO solids, making evident the synergy achieved between these two components (ZnO and metalloporphyrins) for the prepared solids. It was also observed that the metalloporphyrins and the respective free-base ligand suffered redox reactions when used as homogenous catalyst in this reaction, which could influence their performances as catalysts. The same was not observed in the solids containing immobilized MP, suggesting some protective effect of the ZnO solids on the MP complexes upon immobilization probably due to interaction of the complexes with the ZnO matrix.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, zinc oxide with different morphologies and textural properties were prepared and sensitized with metalloporphyrins (MPs) aiming to improve its solar energy harvesting capability for H2 production by water splitting under sunlight (a 300 W Xe/Hg lamp). An anionic iron(III)porphyrin and a cationic manganese(III)porphyrin were immobilized on different ZnO solids predominantly by electrostatic interactions. In general, the prepared MP-free ZnO solid yielded modest catalytic results which had apparently no direct correlation with their textural properties or morphology. On the other hand, when these ZnO solids had iron or manganese porphyrin sensitizing them, their catalytic performances changed and a superior yield towards H2 production was observed in comparison to the pure ZnO solids, making evident the synergy achieved between these two components (ZnO and metalloporphyrins) for the prepared solids. It was also observed that the metalloporphyrins and the respective free-base ligand suffered redox reactions when used as homogenous catalyst in this reaction, which could influence their performances as catalysts. The same was not observed in the solids containing immobilized MP, suggesting some protective effect of the ZnO solids on the MP complexes upon immobilization probably due to interaction of the complexes with the ZnO matrix.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).