Regulating Non-Equilibrium Solvation Structure in Locally Concentrated Ionic Liquid Electrolytes for Wide-Temperature and High-Voltage Lithium Metal Batteries.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haifeng Tu, Zhicheng Wang, Jiangyan Xue, Zhiyong Tang, Yang Liu, Xiaofang Liu, Lingwang Liu, Suwan Lu, Shixiao Weng, Yiwen Gao, Guochao Sun, Zheng Liu, Keyang Peng, Xin Zhang, Dejun Li, Guangye Wu, Meinan Liu, Jianchen Hu, Hong Li, Jingjing Xu, Xiaodong Wu
{"title":"Regulating Non-Equilibrium Solvation Structure in Locally Concentrated Ionic Liquid Electrolytes for Wide-Temperature and High-Voltage Lithium Metal Batteries.","authors":"Haifeng Tu, Zhicheng Wang, Jiangyan Xue, Zhiyong Tang, Yang Liu, Xiaofang Liu, Lingwang Liu, Suwan Lu, Shixiao Weng, Yiwen Gao, Guochao Sun, Zheng Liu, Keyang Peng, Xin Zhang, Dejun Li, Guangye Wu, Meinan Liu, Jianchen Hu, Hong Li, Jingjing Xu, Xiaodong Wu","doi":"10.1002/anie.202412896","DOIUrl":null,"url":null,"abstract":"<p><p>The development of high-voltage lithium metal batteries (LMBs) encounters significant challenges due to aggressive electrode chemistry. Recently, locally concentrated ionic liquid electrolytes (LCILEs) have garnered attention for their exceptional stability with both Li anodes and high-voltage cathodes. However, there remains a limited understanding of how diluents in LCILEs affect the thermodynamic stability of the solvation structure and transportation dynamics of Li+ ions. Herein, we propose a wide-temperature LCILEs with 1,3-dichloropropane (DCP13) diluent to construct a non-equilibrium solvation structure under external electric field, wherein the DCP13 diluent enters the Li+ ion solvation sheath to enhance Li+ ion transport and suppress oxidative side reactions at high-nickel cathode (LiNi0.9Co0.05Mn0.05O2, NCM90).Consequently, a Li/NCM90 cell utilizing this LCILE achieves a high capacity retention of 94% after 240 cycles at 4.3 V, also operates stably at high cut-off voltages from 4.4 to 4.6 V and over a wide temperature range from -20 to 60 °C. Additionally, an Ah-level pouch cell with this LCILE simultaneously achieves high-energy-density and stable cycling, manifesting the practical feasibility. This work redefines the role of diluents in LCILEs, providing inspiration for electrolyte design in developing high-energy-density batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412896","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-voltage lithium metal batteries (LMBs) encounters significant challenges due to aggressive electrode chemistry. Recently, locally concentrated ionic liquid electrolytes (LCILEs) have garnered attention for their exceptional stability with both Li anodes and high-voltage cathodes. However, there remains a limited understanding of how diluents in LCILEs affect the thermodynamic stability of the solvation structure and transportation dynamics of Li+ ions. Herein, we propose a wide-temperature LCILEs with 1,3-dichloropropane (DCP13) diluent to construct a non-equilibrium solvation structure under external electric field, wherein the DCP13 diluent enters the Li+ ion solvation sheath to enhance Li+ ion transport and suppress oxidative side reactions at high-nickel cathode (LiNi0.9Co0.05Mn0.05O2, NCM90).Consequently, a Li/NCM90 cell utilizing this LCILE achieves a high capacity retention of 94% after 240 cycles at 4.3 V, also operates stably at high cut-off voltages from 4.4 to 4.6 V and over a wide temperature range from -20 to 60 °C. Additionally, an Ah-level pouch cell with this LCILE simultaneously achieves high-energy-density and stable cycling, manifesting the practical feasibility. This work redefines the role of diluents in LCILEs, providing inspiration for electrolyte design in developing high-energy-density batteries.

调节局部浓缩离子液体电解质中的非平衡溶解结构,用于宽温高电压锂金属电池。
由于电极化学具有侵蚀性,高压锂金属电池(LMB)的开发面临着巨大挑战。最近,局部浓缩离子液体电解质(LCILEs)因其对锂阳极和高压阴极的优异稳定性而备受关注。然而,人们对局部浓缩离子液体电解质中的稀释剂如何影响 Li+ 离子溶解结构的热力学稳定性和运输动力学的了解仍然有限。在此,我们提出了一种含有 1,3-二氯丙烷(DCP13)稀释剂的宽温 LCILE,以构建外电场下的非平衡溶胶结构,其中 DCP13 稀释剂进入 Li+ 离子溶胶鞘,以增强 Li+ 离子的传输并抑制氧化副反应,从而在高镍阴极(LiNi0.因此,采用这种 LCILE 的锂/NCM90 电池在 4.3 V 电压下循环 240 次后,容量保持率高达 94%,还能在 4.4 至 4.6 V 的高截止电压下和 -20 至 60 °C 的宽温度范围内稳定运行。此外,采用这种 LCILE 的 Ah 级袋式电池可同时实现高能量密度和稳定循环,体现了实用的可行性。这项工作重新定义了稀释剂在 LCILE 中的作用,为开发高能量密度电池的电解质设计提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信