Anastasiia V Prokhorenko, Andrey N Chibisov, Anton A Gnidenko, Mary A Chibisova, Kirill V Obrazcov, Andrey S Vasenko, Anurag Srivastava
{"title":"Ab Initio Study of the Influence of Spin and Orbital Magnetic Moments on the Stability of Magnetic and Charge Distribution in Co:ZnO Monolayer.","authors":"Anastasiia V Prokhorenko, Andrey N Chibisov, Anton A Gnidenko, Mary A Chibisova, Kirill V Obrazcov, Andrey S Vasenko, Anurag Srivastava","doi":"10.1021/acs.jpclett.4c02744","DOIUrl":null,"url":null,"abstract":"<p><p>The development of ultrathin magnets with tunable magnetic properties is essential for advancing quantum computing technologies. In this study, density functional theory (DFT) calculations were employed to investigate the atomic and electronic structures of a ZnO monolayer embedded with cobalt atoms. The impact of spin dynamics on charge transfer within the Co:ZnO system was thoroughly examined. Results revealed that the orbital magnetic moment of the cobalt atoms plays a crucial role in stabilizing the magnetic and charge distributions across the system. These findings offer valuable insights for the design and fabrication of quantum devices, thereby highlighting the potential of Co-doped ZnO monolayers in quantum computing applications.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"10295-10300"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02744","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of ultrathin magnets with tunable magnetic properties is essential for advancing quantum computing technologies. In this study, density functional theory (DFT) calculations were employed to investigate the atomic and electronic structures of a ZnO monolayer embedded with cobalt atoms. The impact of spin dynamics on charge transfer within the Co:ZnO system was thoroughly examined. Results revealed that the orbital magnetic moment of the cobalt atoms plays a crucial role in stabilizing the magnetic and charge distributions across the system. These findings offer valuable insights for the design and fabrication of quantum devices, thereby highlighting the potential of Co-doped ZnO monolayers in quantum computing applications.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.