Rethinking Porosity-Based Diffusivity Estimates for Sorptive Gas Transport at Variable Temperatures.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Chelsea W Neil, Katherine C Swager, S Michelle Bourret, John P Ortiz, Philip H Stauffer
{"title":"Rethinking Porosity-Based Diffusivity Estimates for Sorptive Gas Transport at Variable Temperatures.","authors":"Chelsea W Neil, Katherine C Swager, S Michelle Bourret, John P Ortiz, Philip H Stauffer","doi":"10.1021/acs.est.4c04048","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of noble gas radioisotopes following a suspected underground nuclear explosion is the surest indicator that nuclear detonation has occurred. However, the accurate interpretation and attribution of radioisotopic signatures is only possible with a complete understanding of transport processes occurring between the nuclear cavity and surface. In the far-field, diffusive forces contributing to gas transport are impacted by temperature gradients and subsurface lithology. In the current study, we investigate diffusive transport of xenon (Xe), krypton (Kr), and sulfur hexafluoride (SF<sub>6</sub>) through intact Bandelier tuff at elevated temperatures using a newly developed high temperature diffusion cell. Diffusion coefficients determined using Finite Element Heat and Mass transfer code simulations and the Parameter ESTimation tool range from 2.6-3.1 × 10<sup>-6</sup> m<sup>2</sup>/s at 20 °C, 3.4-5.1 × 10<sup>-6</sup> m<sup>2</sup>/s at 40 °C, and 4.3-7.0 × 10<sup>-6</sup> m<sup>2</sup>/s at 70 °C. Sorption was found to be an important transport mechanism at ambient temperatures (20 °C). Most critically, our study shows that empirical porosity-based diffusion estimates for these gases through tuff captured neither the magnitude nor trends relative to a nonsorbing sandstone. These new insights highlight the importance of experimental transport investigations and will be used to improve models for subsurface gas propagation relevant to proliferation detection and environmental contamination.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c04048","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of noble gas radioisotopes following a suspected underground nuclear explosion is the surest indicator that nuclear detonation has occurred. However, the accurate interpretation and attribution of radioisotopic signatures is only possible with a complete understanding of transport processes occurring between the nuclear cavity and surface. In the far-field, diffusive forces contributing to gas transport are impacted by temperature gradients and subsurface lithology. In the current study, we investigate diffusive transport of xenon (Xe), krypton (Kr), and sulfur hexafluoride (SF6) through intact Bandelier tuff at elevated temperatures using a newly developed high temperature diffusion cell. Diffusion coefficients determined using Finite Element Heat and Mass transfer code simulations and the Parameter ESTimation tool range from 2.6-3.1 × 10-6 m2/s at 20 °C, 3.4-5.1 × 10-6 m2/s at 40 °C, and 4.3-7.0 × 10-6 m2/s at 70 °C. Sorption was found to be an important transport mechanism at ambient temperatures (20 °C). Most critically, our study shows that empirical porosity-based diffusion estimates for these gases through tuff captured neither the magnitude nor trends relative to a nonsorbing sandstone. These new insights highlight the importance of experimental transport investigations and will be used to improve models for subsurface gas propagation relevant to proliferation detection and environmental contamination.

Abstract Image

反思基于孔隙度的吸附性气体在变温条件下迁移的扩散率估算。
在疑似地下核爆炸后探测到惰性气体放射性同位素,是证明发生了核爆炸的最可靠指标。然而,只有全面了解核空腔和地表之间的迁移过程,才能准确解释和归因放射性同位素特征。在远场,气体迁移的扩散力受到温度梯度和地下岩性的影响。在当前的研究中,我们利用新开发的高温扩散单元,研究了氙(Xe)、氪(Kr)和六氟化硫(SF6)在高温条件下通过完整的班德尔凝灰岩的扩散输运。利用有限元传热传质代码模拟和参数ESTimation工具确定的扩散系数范围为:20 °C时 2.6-3.1 × 10-6 m2/s,40 °C时 3.4-5.1 × 10-6 m2/s,70 °C时 4.3-7.0 × 10-6 m2/s。研究发现,在环境温度(20 °C)下,吸附是一种重要的迁移机制。最重要的是,我们的研究表明,基于孔隙率的经验估计值既不能反映这些气体通过凝灰岩的扩散量,也不能反映相对于无吸附性砂岩的扩散趋势。这些新见解强调了实验性迁移研究的重要性,并将用于改进与扩散探测和环境污染有关的地下气体传播模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信