Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo.
{"title":"Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo.","authors":"Shaoxiong Feng, Xu Peng, Yuchong Wu, Ningning Lei, Can Cheng, Yiqing Deng, Xixun Yu","doi":"10.1021/acsbiomaterials.4c01067","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu<sup>3+</sup> released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.5, 2, 3.5, 5, and 6.5%) was added to calcium polyphosphate to obtain 3D porous network-doped Eu calcium polyphosphate (EuCPP) scaffolds with ideal mechanical strength and pore size. Both in vitro and in vivo experiments proved that Eu3+ released from 5% EuCPP scaffolds could significantly promote the migration and proliferation of bone marrow stromal cells which effectively promote angiogenesis; 5% EuCPP could significantly upregulate the ratio of OPG/RANKL in MC3T3-E1 and promote the secretion of osteogenic-related growth factors (ALP and OPN) from MC3T3-E1, indicating the potential of the scaffold to inhibit bone resorption and promote bone formation. In conclusion, 5% EuCPP possesses the biological properties of pro-angiogenesis, anti-inflammation, pro-osteogenesis, and inhibiting bone resorption, which may provide a sustained positive effect throughout the process of bone tissue repair.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture