{"title":"Modeling fiber alignment in 3D printed ultra-high-performance concrete based on stereology theory","authors":"Enlai Dong , Zijian Jia , Lutao Jia , Suduan Rao , Xudong Zhao , Rui Yu , Zedi Zhang , Yueyi Gao , Wei Wang , Yamei Zhang , Yu Chen , Nemkumar Banthia","doi":"10.1016/j.cemconcomp.2024.105786","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a theoretical model for forecasting fiber orientation in 3D-printed ultra-high-performance concrete (3DP-UHPC). Initially, the dynamic evolution process of fiber alignment in 3DP-UHPC was characterized using X-ray computed tomography (X-CT) and image analysis. The results indicated that fiber alignment during extrusion process was primarily constrained by the rigid boundary of nozzle. Leveraging stereology theory, the regularity of fiber alignment affected by boundary effects was elucidated. Following layer deposition, the flattening effect resulting from the nozzle's extrusion force and gravity of upper layers influenced fiber alignment along printing direction. To quantify this impact, a flattening correction coefficient was introduced to modify fiber orientation coefficient in an ideal state. Finally, considering the overlapping effect of boundary and flattening on fiber orientation in 3DP-UHPC, a theoretical model was developed to predict fiber orientation. The model demonstrated robust adaptability, providing valuable insights into the design of 3DP-UHPC with improved fiber reinforcement efficiency.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"154 ","pages":"Article 105786"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524003597","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a theoretical model for forecasting fiber orientation in 3D-printed ultra-high-performance concrete (3DP-UHPC). Initially, the dynamic evolution process of fiber alignment in 3DP-UHPC was characterized using X-ray computed tomography (X-CT) and image analysis. The results indicated that fiber alignment during extrusion process was primarily constrained by the rigid boundary of nozzle. Leveraging stereology theory, the regularity of fiber alignment affected by boundary effects was elucidated. Following layer deposition, the flattening effect resulting from the nozzle's extrusion force and gravity of upper layers influenced fiber alignment along printing direction. To quantify this impact, a flattening correction coefficient was introduced to modify fiber orientation coefficient in an ideal state. Finally, considering the overlapping effect of boundary and flattening on fiber orientation in 3DP-UHPC, a theoretical model was developed to predict fiber orientation. The model demonstrated robust adaptability, providing valuable insights into the design of 3DP-UHPC with improved fiber reinforcement efficiency.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.