Synergizing Proton‐Dominated Storage and Electron Transfer for High‐Loading, Fast‐Rate Organic Anode in Metal‐Free Aqueous Zinc‐Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruanye Zhang, Hai Xu, Hui Dou, Xiaogang Zhang
{"title":"Synergizing Proton‐Dominated Storage and Electron Transfer for High‐Loading, Fast‐Rate Organic Anode in Metal‐Free Aqueous Zinc‐Ion Batteries","authors":"Ruanye Zhang, Hai Xu, Hui Dou, Xiaogang Zhang","doi":"10.1002/adfm.202416497","DOIUrl":null,"url":null,"abstract":"Developing suitable anode materials to fabricate metal‐free Zinc ion battery is a promising strategy to solve the issues of Zn metal anode, such as dendrite growth and side reactions. However, the reported anode materials face shortcomings such as unsatisfactory rate performance, low mass loading, etc. Herein, featuring synergetic proton‐dominated storage and electron transfer, a conjugated polyimide nanocomposite trapped by multi‐walled carbon nanotubes (PPN‐MWCNT) is developed for high‐loading, fast‐rate organic anode materials in metal‐free Zinc ion battery. Specifically, abundant hydrophilic active sites and nonplaner conjunctional structure in PPN achieve proton‐dominated storage with two steps four electrons mechanism, leading to fast ion diffusion, and the intimate contact between the polymer and MWCNT via in situ polymerization ensures the excellent charge transfer and robust structure. Thus, the PPN‐MWCNT electrode delivers low redox potential, ultrahigh rate performance (50 A g<jats:sup>−1</jats:sup>), superior loading capability (≈40 mg cm<jats:sup>−2</jats:sup>) and exceptional long‐term cyclability (over 12 000 cycles). More importantly, the full batteries assembled with PPN‐MWCNT anode and different cathodes deliver a high energy density of 106.4 Wh kg<jats:sup>−1</jats:sup> (PPN‐MWCNT//MnO<jats:sub>2</jats:sub>) and 83.7 Wh kg<jats:sup>−1</jats:sup> (PPN‐MWCNT//active carbon‐I<jats:sub>2</jats:sub>), exceeding the most reported metal‐free Zinc ion batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416497","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing suitable anode materials to fabricate metal‐free Zinc ion battery is a promising strategy to solve the issues of Zn metal anode, such as dendrite growth and side reactions. However, the reported anode materials face shortcomings such as unsatisfactory rate performance, low mass loading, etc. Herein, featuring synergetic proton‐dominated storage and electron transfer, a conjugated polyimide nanocomposite trapped by multi‐walled carbon nanotubes (PPN‐MWCNT) is developed for high‐loading, fast‐rate organic anode materials in metal‐free Zinc ion battery. Specifically, abundant hydrophilic active sites and nonplaner conjunctional structure in PPN achieve proton‐dominated storage with two steps four electrons mechanism, leading to fast ion diffusion, and the intimate contact between the polymer and MWCNT via in situ polymerization ensures the excellent charge transfer and robust structure. Thus, the PPN‐MWCNT electrode delivers low redox potential, ultrahigh rate performance (50 A g−1), superior loading capability (≈40 mg cm−2) and exceptional long‐term cyclability (over 12 000 cycles). More importantly, the full batteries assembled with PPN‐MWCNT anode and different cathodes deliver a high energy density of 106.4 Wh kg−1 (PPN‐MWCNT//MnO2) and 83.7 Wh kg−1 (PPN‐MWCNT//active carbon‐I2), exceeding the most reported metal‐free Zinc ion batteries.
在无金属锌离子水电池中协同质子主导存储和电子转移,实现高装载、快速率的有机阳极
开发合适的阳极材料来制造无金属锌离子电池,是解决金属锌阳极问题(如枝晶生长和副反应)的一种有前途的策略。然而,已报道的阳极材料面临着速率性能不理想、质量负荷低等缺点。本文以质子存储和电子传递的协同作用为特征,开发了一种由多壁碳纳米管(PPN-MWCNT)截留的共轭聚酰亚胺纳米复合材料,用于无金属锌离子电池中的高负载、快速率有机负极材料。具体来说,PPN 中丰富的亲水活性位点和非平面共轭结构实现了以质子为主导的两步四电子存储机制,从而导致离子的快速扩散,而聚合物与 MWCNT 通过原位聚合实现的亲密接触则确保了良好的电荷转移和坚固的结构。因此,PPN-MWCNT 电极具有较低的氧化还原电位、超高的速率性能(50 A g-1)、超强的负载能力(≈40 mg cm-2)和卓越的长期循环性(超过 12 000 次循环)。更重要的是,由 PPN-MWCNT 阳极和不同阴极组装而成的完整电池具有 106.4 Wh kg-1 (PPN-MWCNT//MnO2)和 83.7 Wh kg-1 (PPN-MWCNT//活性碳-I2)的高能量密度,超过了已报道的大多数无金属锌离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信