Scalability Study of All-Photonics Metro/ Access Network With Simultaneous Reception of Wavelength-Multiplexed Control and Main Signals

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ryo Igarashi;Shin Kaneko;Yasutaka Kimura;Takuya Kanai;Jun-ichi Kani;Tomoaki Yoshida
{"title":"Scalability Study of All-Photonics Metro/ Access Network With Simultaneous Reception of Wavelength-Multiplexed Control and Main Signals","authors":"Ryo Igarashi;Shin Kaneko;Yasutaka Kimura;Takuya Kanai;Jun-ichi Kani;Tomoaki Yoshida","doi":"10.1109/JPHOT.2024.3461803","DOIUrl":null,"url":null,"abstract":"Research on the all-photonics metro/access network is active as the next generation communication system. It aims to provide high-throughput, low-latency, low-power-consumption connections via end-to-end optical paths that directly link users without o/e/o conversion. One issue with realizing this network is how to implement the remote-control channel cost-effectively. In this work, we propose a cost-effective control signal transmission system based on auxiliary management and control channel (AMCC) and wavelength division multiplexing (WDM) technology. 25-Gbit/s non-return-to-zero (NRZ) 40 km transmission confirms the feasibility of the proposed system. The experiment comprehensively examines the influence that upstream/downstream control signals and main signals on different paths have on each other's receiver sensitivity. With the appropriate parameters, the penalty on the main signal's receiver sensitivity due to upstream/downstream control signals can be reduced to just 0.5 dB. The proposed method can realize cost-effective control channels in the all-photonics metro/access network with minimal sensitivity degradation.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-10"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684505","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684505/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Research on the all-photonics metro/access network is active as the next generation communication system. It aims to provide high-throughput, low-latency, low-power-consumption connections via end-to-end optical paths that directly link users without o/e/o conversion. One issue with realizing this network is how to implement the remote-control channel cost-effectively. In this work, we propose a cost-effective control signal transmission system based on auxiliary management and control channel (AMCC) and wavelength division multiplexing (WDM) technology. 25-Gbit/s non-return-to-zero (NRZ) 40 km transmission confirms the feasibility of the proposed system. The experiment comprehensively examines the influence that upstream/downstream control signals and main signals on different paths have on each other's receiver sensitivity. With the appropriate parameters, the penalty on the main signal's receiver sensitivity due to upstream/downstream control signals can be reduced to just 0.5 dB. The proposed method can realize cost-effective control channels in the all-photonics metro/access network with minimal sensitivity degradation.
同时接收波长多路复用控制信号和主信号的全光子城域网/接入网可扩展性研究
作为下一代通信系统,全光子城域/接入网的研究十分活跃。其目的是通过端到端光通路提供高吞吐量、低延迟、低功耗的连接,直接连接用户而无需进行o/e/o转换。实现这一网络的一个问题是如何经济高效地实现遥控信道。在这项工作中,我们提出了一种基于辅助管理与控制信道(AMCC)和波分复用(WDM)技术的经济高效的控制信号传输系统。25-Gbit/s 非归零(NRZ)40 公里传输证实了所提系统的可行性。实验全面考察了不同路径上的上行/下行控制信号和主信号对彼此接收灵敏度的影响。在参数适当的情况下,上行/下行控制信号对主信号接收灵敏度的影响可降至 0.5 dB。所提出的方法可以在全光子城域/接入网络中实现具有成本效益的控制信道,同时将灵敏度降低到最低程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信