The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants.

IF 4.5 Q1 MICROBIOLOGY
mLife Pub Date : 2024-09-16 eCollection Date: 2024-09-01 DOI:10.1002/mlf2.12140
Kai Song, Ruifang Li, Ying Cui, Bo Chen, Lian Zhou, Wenying Han, Bo-Le Jiang, Ya-Wen He
{"title":"The phytopathogen <i>Xanthomonas campestris</i> senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants.","authors":"Kai Song, Ruifang Li, Ying Cui, Bo Chen, Lian Zhou, Wenying Han, Bo-Le Jiang, Ya-Wen He","doi":"10.1002/mlf2.12140","DOIUrl":null,"url":null,"abstract":"<p><p>Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen <i>Xanthomonas campestris</i> pv. <i>campestris</i> (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated <i>hepABCD</i> expression by specifically binding to an AT-rich region of the promoter of the <i>hepRABCD</i> operon, P<sub>hep</sub>. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter P<sub>hep</sub> and then induced the expression of <i>hepABCD</i>. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The <i>hepRABCD</i> cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the <i>hepRABCD</i> cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"3 3","pages":"430-444"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.

植物病原体野油菜黄单胞菌通过传感器 HepR 和 RND 家族外排泵感知并外排水杨酸,从而促进宿主植物的毒力。
水杨酸(SA)在植物抵御生物营养型和半生物营养型病原体的过程中发挥着重要作用。病原体被识别后,寄主植物感染部位的 SA 生物合成急剧增加。病原体如何感知并承受 SA 胁迫的冲击,以便在感染后在植物体内存活,仍有待了解。这项工作的目的是确定模式植物病原体野油菜黄单胞菌(Xanthomonas campestris pv. campestris,Xcc)在宿主植物体内感染期间如何感知和外流 SA。首先,RNA-Seq分析确定了一个SA响应操作子Xcc4167-Xcc4171,该操作子编码Xcc中的MarR家族转录因子HepR和RND(抗性-结节-细胞分裂)家族外流泵HepABCD。电泳迁移测定和 DNase I 标记分析表明,HepR 通过与 hepRABCD 操作子 Phep 启动子的 AT 富集区特异性结合,负向调控 hepABCD 的表达。其次,等温滴定量热法和进一步的遗传分析表明,HepR 是一种新型的 SA 传感器。SA 结合可将 HepR 从其同源启动子 Phep 中释放出来,进而诱导 hepABCD 的表达。第三,RND 家族外排泵 HepABCD 负责 SA 外排。hepRABCD 簇还参与调节培养 pH 值和法定量传感信号扩散信号因子的周转。最后,在 XC1 感染中国萝卜期间,hepRABCD 簇被转录,并且是 Xcc 在中国萝卜和卷心菜中完全毒力所必需的。这些发现表明,Xcc共同利用植物防御信号SA激活多药外排泵的能力可能是为了确保Xcc在易感寄主植物中的生存和毒力而进化而来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信