{"title":"Beyond seen faults: Zero-shot diagnosis of power circuit breakers using symptom description transfer.","authors":"Qiuyu Yang, Zhenlin Zhai, Yuyi Lin, Yuxiang Liao, Jingyi Xie, Xue Xue, Jiangjun Ruan","doi":"10.1016/j.isatra.2024.09.020","DOIUrl":null,"url":null,"abstract":"<p><p>Power circuit breakers (CBs) are vital for the control and protection of power systems, yet diagnosing their faults accurately remains a challenge due to the diversity of fault types and the complexity of their structures. Traditional data-driven methods, although effective, require extensive labeled data for each fault class, limiting their applicability in real-world scenarios where many faults are unseen. This paper addresses these limitations by introducing symptom description transfer-based zero-shot fault diagnosis (SDT-ZSFD), a method that leverages zero-shot learning for fault diagnosis. Our approach constructs a fault symptom description (FSD) framework, which embeds a fault symptom layer between the feature layer and the label layer to facilitate knowledge transfer from seen to unseen fault classes. The method utilizes current and acceleration signals collected during CB operation to extract features. By applying sparse principal component analysis to these signals, we derive high-quality features that are mapped to the FSD framework, enabling effective zero-shot learning. Our method achieves a satisfactory recognition rate by accurately diagnosing unseen faults based on these symptoms. This approach not only overcomes the data scarcity problem but also holds potential for practical applications in power system maintenance. The SDT-ZSFD method offers a reliable solution for CB fault diagnosis and provides a foundation for future improvements in symptom-based zero-shot diagnostic mechanisms and algorithmic robustness.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Power circuit breakers (CBs) are vital for the control and protection of power systems, yet diagnosing their faults accurately remains a challenge due to the diversity of fault types and the complexity of their structures. Traditional data-driven methods, although effective, require extensive labeled data for each fault class, limiting their applicability in real-world scenarios where many faults are unseen. This paper addresses these limitations by introducing symptom description transfer-based zero-shot fault diagnosis (SDT-ZSFD), a method that leverages zero-shot learning for fault diagnosis. Our approach constructs a fault symptom description (FSD) framework, which embeds a fault symptom layer between the feature layer and the label layer to facilitate knowledge transfer from seen to unseen fault classes. The method utilizes current and acceleration signals collected during CB operation to extract features. By applying sparse principal component analysis to these signals, we derive high-quality features that are mapped to the FSD framework, enabling effective zero-shot learning. Our method achieves a satisfactory recognition rate by accurately diagnosing unseen faults based on these symptoms. This approach not only overcomes the data scarcity problem but also holds potential for practical applications in power system maintenance. The SDT-ZSFD method offers a reliable solution for CB fault diagnosis and provides a foundation for future improvements in symptom-based zero-shot diagnostic mechanisms and algorithmic robustness.