{"title":"A general multi-scale description of metastable adaptive motion across fitness valleys.","authors":"Manuel Esser, Anna Kraut","doi":"10.1007/s00285-024-02143-3","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph <math><mrow><mi>G</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo>)</mo></mrow> </math> . The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541-358, 2019) and Coquille et al. (Electron J Probab 26:1-37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 4","pages":"46"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02143-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph . The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541-358, 2019) and Coquille et al. (Electron J Probab 26:1-37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.