LEAP2, a ghrelin receptor inverse agonist, and its effect on alcohol-related responses in rodents.

IF 5.8 1区 医学 Q1 PSYCHIATRY
Maximilian Tufvesson-Alm, Cajsa Aranäs, Sebastian Blid Sköldheden, Jesper Vestlund, Christian E Edvardsson, Elisabet Jerlhag
{"title":"LEAP2, a ghrelin receptor inverse agonist, and its effect on alcohol-related responses in rodents.","authors":"Maximilian Tufvesson-Alm, Cajsa Aranäs, Sebastian Blid Sköldheden, Jesper Vestlund, Christian E Edvardsson, Elisabet Jerlhag","doi":"10.1038/s41398-024-03136-y","DOIUrl":null,"url":null,"abstract":"<p><p>The underlying neurobiology of alcohol use disorder (AUD) is complex and needs further unraveling, with one of the key mechanisms being the gut-brain peptide ghrelin and its receptor (GHSR). However, additional substrates of the ghrelin pathway, such as liver-expressed antimicrobial peptide 2 (LEAP2), an endogenous GHSR inverse agonist, may contribute to this neurobiological framework. While LEAP2 modulates feeding and reward through central mechanisms, its effects on alcohol responses are unknown. The aim of the present study was therefore to identify the impact of central LEAP2 on the ability of alcohol to activate the mesolimbic dopamine system and to define its ability to control alcohol intake. These experiments revealed that central LEAP2 (i.e. into the third ventricle) prevented the ability of alcohol to cause locomotor stimulation in male mice, suppressed the memory of alcohol reward and attenuated the dopamine release in the nucleus accumbens caused by alcohol. Moreover, central LEAP2 reduced alcohol consumption in both male and female rats exposed to alcohol for 6 weeks before treatment. However, the serum levels of LEAP2 were similar between high- and low- alcohol-consuming (male) rats. Furthermore, central LEAP2 lowered the food intake in the alcohol-consuming male rats and reduced the body weight in the females. Collectively, the present study revealed that central LEAP2 mitigates alcohol-related responses in rodents, contributing to our understanding of the ghrelin pathway's role in alcohol effects.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03136-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

The underlying neurobiology of alcohol use disorder (AUD) is complex and needs further unraveling, with one of the key mechanisms being the gut-brain peptide ghrelin and its receptor (GHSR). However, additional substrates of the ghrelin pathway, such as liver-expressed antimicrobial peptide 2 (LEAP2), an endogenous GHSR inverse agonist, may contribute to this neurobiological framework. While LEAP2 modulates feeding and reward through central mechanisms, its effects on alcohol responses are unknown. The aim of the present study was therefore to identify the impact of central LEAP2 on the ability of alcohol to activate the mesolimbic dopamine system and to define its ability to control alcohol intake. These experiments revealed that central LEAP2 (i.e. into the third ventricle) prevented the ability of alcohol to cause locomotor stimulation in male mice, suppressed the memory of alcohol reward and attenuated the dopamine release in the nucleus accumbens caused by alcohol. Moreover, central LEAP2 reduced alcohol consumption in both male and female rats exposed to alcohol for 6 weeks before treatment. However, the serum levels of LEAP2 were similar between high- and low- alcohol-consuming (male) rats. Furthermore, central LEAP2 lowered the food intake in the alcohol-consuming male rats and reduced the body weight in the females. Collectively, the present study revealed that central LEAP2 mitigates alcohol-related responses in rodents, contributing to our understanding of the ghrelin pathway's role in alcohol effects.

胰高血糖素受体反向激动剂 LEAP2 及其对啮齿动物酒精相关反应的影响。
酒精使用障碍(AUD)的潜在神经生物学非常复杂,需要进一步研究,其中一个关键机制是肠脑肽胃泌素及其受体(GHSR)。然而,胃泌素通路的其他底物,如肝表达抗菌肽 2(LEAP2),一种内源性 GHSR 反向激动剂,也可能有助于这一神经生物学框架。虽然 LEAP2 通过中枢机制调节进食和奖赏,但其对酒精反应的影响尚不清楚。因此,本研究旨在确定中枢 LEAP2 对酒精激活间叶多巴胺系统能力的影响,并确定其控制酒精摄入量的能力。这些实验表明,中枢LEAP2(即进入第三脑室)可阻止酒精对雄性小鼠运动能力的刺激,抑制对酒精奖赏的记忆,并减弱酒精在伏隔核中引起的多巴胺释放。此外,中枢 LEAP2 还能减少接触酒精 6 周的雄性和雌性大鼠的酒精消耗量。然而,高酒精消耗量和低酒精消耗量(雄性)大鼠血清中的LEAP2水平相似。此外,中枢 LEAP2 降低了饮酒雄性大鼠的食物摄入量,减轻了雌性大鼠的体重。总之,本研究揭示了中枢 LEAP2 可减轻啮齿类动物与酒精相关的反应,有助于我们了解胃泌素途径在酒精效应中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信