{"title":"Development and optimization of guaifenesin sustained release mini-tablets for adult and geriatric patients.","authors":"Mahshid Samadi, Mitra Jelvehgari, Sara Salatin","doi":"10.1080/20415990.2024.2406216","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The main aim of this study was to formulate and optimize sustained release mini-tablets of guaifenesin.<b>Materials & methods:</b> Guaifenesin granules were successfully prepared using different blend ratios of carnauba wax to drug by melt granulation method. The properties of granules were further modified by combining them with ethyl cellulose. The obtained granules were then mixed and compressed into mini-tablets using a tablet press machine. The resulting mini-tablets were characterized in terms of weight, thickness, hardness, drug content and <i>in vitro</i> drug release.<b>Results:</b> Mini-tablets with 1:6 carnauba wax to drug ratio showed superior physicochemical characteristics, releasing about 100.03% of guaifenesin over 8 h. Ethyl cellulose offers a great potential to accurately control drug release from mini-tablets.<b>Conclusion:</b> The prepared mini-tablets seem to be a very promising alternative to guaifenesin conventional formulations and can be used in adults and elderly people.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"859-869"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2024.2406216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The main aim of this study was to formulate and optimize sustained release mini-tablets of guaifenesin.Materials & methods: Guaifenesin granules were successfully prepared using different blend ratios of carnauba wax to drug by melt granulation method. The properties of granules were further modified by combining them with ethyl cellulose. The obtained granules were then mixed and compressed into mini-tablets using a tablet press machine. The resulting mini-tablets were characterized in terms of weight, thickness, hardness, drug content and in vitro drug release.Results: Mini-tablets with 1:6 carnauba wax to drug ratio showed superior physicochemical characteristics, releasing about 100.03% of guaifenesin over 8 h. Ethyl cellulose offers a great potential to accurately control drug release from mini-tablets.Conclusion: The prepared mini-tablets seem to be a very promising alternative to guaifenesin conventional formulations and can be used in adults and elderly people.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.