Searching for potential acetylcholinesterase inhibitors: a combined approach of multi-step similarity search, machine learning and molecular dynamics simulations.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2024-10-02 eCollection Date: 2024-10-01 DOI:10.1098/rsos.240546
Quynh Mai Thai, Minh Quan Pham, Phuong-Thao Tran, Trung Hai Nguyen, Son Tung Ngo
{"title":"Searching for potential acetylcholinesterase inhibitors: a combined approach of multi-step similarity search, machine learning and molecular dynamics simulations.","authors":"Quynh Mai Thai, Minh Quan Pham, Phuong-Thao Tran, Trung Hai Nguyen, Son Tung Ngo","doi":"10.1098/rsos.240546","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase. Both machine learning prediction and binding free energy calculation, based on linear interaction energy, suggest that the compound CID54414454 would bind strongly to acetylcholinesterase and hence is a promising inhibitor.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240546"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240546","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Targeting acetylcholinesterase is one of the most important strategies for developing therapeutics against Alzheimer's disease. In this work, we have employed a new approach that combines machine learning models, a multi-step similarity search of the PubChem library and molecular dynamics simulations to investigate potential inhibitors for acetylcholinesterase. Our search strategy has been shown to significantly enrich the set of compounds with strong predicted binding affinity to acetylcholinesterase. Both machine learning prediction and binding free energy calculation, based on linear interaction energy, suggest that the compound CID54414454 would bind strongly to acetylcholinesterase and hence is a promising inhibitor.

寻找潜在的乙酰胆碱酯酶抑制剂:多步骤相似性搜索、机器学习和分子动力学模拟的组合方法。
以乙酰胆碱酯酶为靶点是开发阿尔茨海默病治疗药物的最重要策略之一。在这项工作中,我们采用了一种新方法,将机器学习模型、PubChem 库的多步骤相似性搜索和分子动力学模拟结合起来,研究乙酰胆碱酯酶的潜在抑制剂。研究表明,我们的搜索策略极大地丰富了预测与乙酰胆碱酯酶结合亲和力强的化合物集。机器学习预测和基于线性相互作用能的结合自由能计算都表明,化合物 CID54414454 与乙酰胆碱酯酶的结合力很强,因此是一种很有前途的抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信