Hyperspectral imaging for pest symptom detection in bell pepper.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Marvin Krüger, Thomas Zemanek, Dominik Wuttke, Maximilian Dinkel, Albrecht Serfling, Elias Böckmann
{"title":"Hyperspectral imaging for pest symptom detection in bell pepper.","authors":"Marvin Krüger, Thomas Zemanek, Dominik Wuttke, Maximilian Dinkel, Albrecht Serfling, Elias Böckmann","doi":"10.1186/s13007-024-01273-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The automation of pest monitoring is highly important for enhancing integrated pest management in practice. In this context, advanced technologies are becoming increasingly explored. Hyperspectral imaging (HSI) is a technique that has been used frequently in recent years in the context of natural science, and the successful detection of several fungal diseases and some pests has been reported. Various automated measures and image analysis methods offer great potential for enhancing monitoring in practice.</p><p><strong>Results: </strong>In this study, the use of hyperspectral imaging over a wide spectrum from 400 to 2500 nm is investigated for noninvasive identification and the distinction of healthy plants and plants infested with Myzus persicae (Sulzer) and Frankliniella occidentalis (Pergande) on bell peppers. Pest infestations were carried out in netted areas, and images of single plants and dissected leaves were used to train the decision algorithm. Additionally, a specially modified spraying robot was converted into an autonomous platform used to carry the hyperspectral imaging system to take images under greenhouse conditions. The algorithm was developed via the XGBoost framework with gradient-boosted trees. Signals from specific wavelengths were found to be associated with the damage patterns of different insects. Under confined conditions, M. persicae and F. occidentalis infestations were distinguished from each other and from the uninfested control for single leaves. Differentiation was still possible when small whole plants were used. However, application under greenhouse conditions did not result in a good fit compared to the results of manual monitoring.</p><p><strong>Conclusion: </strong>Hyperspectral images can be used to distinguish sucking pests on bell peppers on the basis of single leaves and intact potted bell pepper plants under controlled conditions. Wavelength reduction methods offer options for multispectral camera usage in high-grown vegetable greenhouses. The application of automated platforms similar to the one tested in this study could be possible, but for successful pest detection under greenhouse conditions, algorithms should be further developed fully considering real-world conditions.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"156"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01273-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The automation of pest monitoring is highly important for enhancing integrated pest management in practice. In this context, advanced technologies are becoming increasingly explored. Hyperspectral imaging (HSI) is a technique that has been used frequently in recent years in the context of natural science, and the successful detection of several fungal diseases and some pests has been reported. Various automated measures and image analysis methods offer great potential for enhancing monitoring in practice.

Results: In this study, the use of hyperspectral imaging over a wide spectrum from 400 to 2500 nm is investigated for noninvasive identification and the distinction of healthy plants and plants infested with Myzus persicae (Sulzer) and Frankliniella occidentalis (Pergande) on bell peppers. Pest infestations were carried out in netted areas, and images of single plants and dissected leaves were used to train the decision algorithm. Additionally, a specially modified spraying robot was converted into an autonomous platform used to carry the hyperspectral imaging system to take images under greenhouse conditions. The algorithm was developed via the XGBoost framework with gradient-boosted trees. Signals from specific wavelengths were found to be associated with the damage patterns of different insects. Under confined conditions, M. persicae and F. occidentalis infestations were distinguished from each other and from the uninfested control for single leaves. Differentiation was still possible when small whole plants were used. However, application under greenhouse conditions did not result in a good fit compared to the results of manual monitoring.

Conclusion: Hyperspectral images can be used to distinguish sucking pests on bell peppers on the basis of single leaves and intact potted bell pepper plants under controlled conditions. Wavelength reduction methods offer options for multispectral camera usage in high-grown vegetable greenhouses. The application of automated platforms similar to the one tested in this study could be possible, but for successful pest detection under greenhouse conditions, algorithms should be further developed fully considering real-world conditions.

用于检测甜椒虫害症状的高光谱成像技术。
背景:害虫监测自动化对于在实践中加强害虫综合治理非常重要。在此背景下,人们越来越多地探索先进技术。高光谱成像(HSI)是近年来在自然科学领域频繁使用的一种技术,有报道称该技术成功检测了多种真菌病害和一些害虫。各种自动化措施和图像分析方法为加强实际监测提供了巨大潜力:在这项研究中,研究了如何利用波长从 400 纳米到 2500 纳米的宽光谱高光谱成像技术,对甜椒上的健康植物和受柿蝇菌(Myzus persicae (Sulzer))和西洋桔霉(Frankliniella occidentalis (Pergande))侵染的植物进行非侵入式识别和区分。虫害发生在网状区域,单株植物和剖开叶片的图像用于训练决策算法。此外,一个经过特殊改装的喷洒机器人被改装成一个自主平台,用于携带高光谱成像系统,在温室条件下拍摄图像。该算法是通过梯度增强树的 XGBoost 框架开发的。研究发现,特定波长的信号与不同昆虫的危害模式有关。在密闭条件下,对于单片叶片,可以区分出被害虫(M. persicae)和被害虫(F. occidentalis),也可以区分出未被害虫(F. occidentalis)。使用小的整株植物时仍可区分。然而,在温室条件下应用时,与人工监测的结果相比,其拟合效果并不理想:高光谱图像可用于在受控条件下根据单叶和完整的盆栽甜椒植株区分甜椒上的吸食害虫。波长缩减方法为在高生长蔬菜温室中使用多光谱相机提供了选择。类似于本研究中测试的自动平台的应用是可能的,但要在温室条件下成功检测害虫,应充分考虑实际条件进一步开发算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信