Bacillus subtilis EpsA-O: A novel exopolysaccharide structure acting as an efficient adhesive in biofilms.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Iztok Dogsa, Barbara Bellich, Mojca Blaznik, Cristina Lagatolla, Neil Ravenscroft, Roberto Rizzo, David Stopar, Paola Cescutti
{"title":"Bacillus subtilis EpsA-O: A novel exopolysaccharide structure acting as an efficient adhesive in biofilms.","authors":"Iztok Dogsa, Barbara Bellich, Mojca Blaznik, Cristina Lagatolla, Neil Ravenscroft, Roberto Rizzo, David Stopar, Paola Cescutti","doi":"10.1038/s41522-024-00555-z","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]<sub>n</sub>, and the side chain β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00555-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]n, and the side chain β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.

枯草杆菌 EpsA-O:一种新型外多糖结构可作为生物膜中的高效粘合剂。
胞外多糖是生物膜形成的关键成分。虽然枯草芽孢杆菌是特征最明显的革兰氏阳性生物膜模型系统之一,但其外多糖 EpsA-O 的结构-功能仍有待阐明。通过结合化学分析、核磁共振光谱、流变学和分子建模,获得了从原子到超分子尺度的 EpsA-O 结构的高分辨率数据。其重复单元由三糖骨架[→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]n和与GalNAc的C4相连的侧链β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→)组成。一级结构与流变学行为之间的密切吻合使我们能够建立 EpsA-O 的大分子和超分子溶液结构模型,该结构可跨越细胞间隙形成凝胶,从而形成复杂的三维生物膜网络,这一点已被产生 EpsA-O 能力受损的突变株所证实。这是对生物膜粘合剂外多糖的全面结构-功能研究,将为未来生物膜结构形成的研究提供有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信