Characterizing diffusion-controlled release of small-molecules using quantitative MRI in view of applications to orthopedic infection.

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2024-12-01 Epub Date: 2024-10-02 DOI:10.1002/nbm.5254
Greg Hong, Tina Khazaee, Santiago F Cobos, Spencer D Christiansen, Junmin Liu, Maria Drangova, David W Holdsworth
{"title":"Characterizing diffusion-controlled release of small-molecules using quantitative MRI in view of applications to orthopedic infection.","authors":"Greg Hong, Tina Khazaee, Santiago F Cobos, Spencer D Christiansen, Junmin Liu, Maria Drangova, David W Holdsworth","doi":"10.1002/nbm.5254","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R<sup>2</sup>-value of 0.991, yielding a diffusion constant of 4.59 × 10<sup>-11</sup> m<sup>2</sup> s<sup>-1</sup>. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5254"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R2-value of 0.991, yielding a diffusion constant of 4.59 × 10-11 m2 s-1. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.

从骨科感染应用的角度,利用定量核磁共振成像鉴定小分子的扩散控制释放。
硫酸钙是一种成熟的局部给药载体,但如何无创测量药物释放,从而提高我们对局部给药的理解,仍是一个尚未满足的需求。我们的目标是通过钆布醇造影剂定量估算载入硫酸钙载体的小分子在扩散控制下的释放情况。由硫酸钙(单独或在金属支架内)制成的中心圆柱形核心装载了造影剂,造影剂释放到琼脂中。在 4 周内的多个时间点采集多回波扫描,并处理成 R2* 和定量易感图谱 (QSM) 地图。平均 R2* 值与已知的给药模型相拟合,然后与核心 QSM 的下降进行比较。将硫酸钙核心的 R2* 测量值与药物释放模型的约束条件进行拟合,结果 R2* 值为 0.991,得出扩散常数为 4.59 × 10-11 m2 s-1。在金属支架中加入载体会导致释放速度减慢。QSM 显示了非金属核心中由此产生的易感性损失,但在金属周围却不可靠。R2* 表征释放的钆布醇,QSM 则检测由此导致的核心电感下降。添加多孔金属支架可减缓钆布醇的释放,正如预期的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信