Device simulation study of multilayer MoS2Schottky barrier field-effect transistors.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhuoyang He, HeeBong Yang, Na Young Kim
{"title":"Device simulation study of multilayer MoS<sub>2</sub>Schottky barrier field-effect transistors.","authors":"Zhuoyang He, HeeBong Yang, Na Young Kim","doi":"10.1088/1361-6528/ad823e","DOIUrl":null,"url":null,"abstract":"<p><p>Molybdenum disulfide (MoS<sub>2</sub>) is a representative two-dimensional layered transition-metal dichalcogenide semiconductor. Layer-number-dependent electronic properties are attractive in the development of nanomaterial-based electronics for a wide range of applications including sensors, switches, and amplifiers. MoS<sub>2</sub>field-effect transistors (FETs) have been studied as promising future nanoelectronic devices with desirable features of atomic-level thickness and high electrical properties. When a naturally<i>n</i>-doped MoS<sub>2</sub>is contacted with metals, a strong Fermi-level pinning effect adjusts a Schottky barrier and influences its electronic characteristics significantly. In this study, we investigate multilayer MoS<sub>2</sub>Schottky barrier FETs (SBFETs), emphasizing the metal-contact impact on device performance via computational device modeling. We find that<i>p</i>-type MoS<sub>2</sub>SBFETs may be built with appropriate metals and gate voltage control. Furthermore, we propose ambipolar multilayer MoS<sub>2</sub>SBFETs with asymmetric metal electrodes, which exhibit gate-voltage dependent ambipolar transport behavior through optimizing metal contacts in MoS<sub>2</sub>device. Introducing a dual-split gate geometry, the MoS<sub>2</sub>SBFETs can further operate in four distinct configurations:<i>p</i> - <i>p</i>,<i>n</i> - <i>n</i>,<i>p</i> - <i>n</i>, and<i>n</i> - <i>p</i>. Electrical characteristics are calculated, and improved performance of a high rectification ratio can be feasible as an attractive feature for efficient electrical and photonic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad823e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum disulfide (MoS2) is a representative two-dimensional layered transition-metal dichalcogenide semiconductor. Layer-number-dependent electronic properties are attractive in the development of nanomaterial-based electronics for a wide range of applications including sensors, switches, and amplifiers. MoS2field-effect transistors (FETs) have been studied as promising future nanoelectronic devices with desirable features of atomic-level thickness and high electrical properties. When a naturallyn-doped MoS2is contacted with metals, a strong Fermi-level pinning effect adjusts a Schottky barrier and influences its electronic characteristics significantly. In this study, we investigate multilayer MoS2Schottky barrier FETs (SBFETs), emphasizing the metal-contact impact on device performance via computational device modeling. We find thatp-type MoS2SBFETs may be built with appropriate metals and gate voltage control. Furthermore, we propose ambipolar multilayer MoS2SBFETs with asymmetric metal electrodes, which exhibit gate-voltage dependent ambipolar transport behavior through optimizing metal contacts in MoS2device. Introducing a dual-split gate geometry, the MoS2SBFETs can further operate in four distinct configurations:p - p,n - n,p - n, andn - p. Electrical characteristics are calculated, and improved performance of a high rectification ratio can be feasible as an attractive feature for efficient electrical and photonic devices.

多层 MoS2 肖特基势垒场效应晶体管的器件模拟研究。
二硫化钼(MoS2)是一种具有代表性的二维层状过渡金属二卤化物半导体。层数相关的电子特性对开发基于纳米材料的电子器件具有吸引力,可广泛应用于传感器、开关和放大器等领域。MoS2 场效应晶体管(FET)具有原子级厚度和高电性能等理想特性,是未来很有前途的纳米电子器件。当天然 n 掺杂的 MoS2 与金属接触时,强大的费米级钉扎效应会调整肖特基势垒,并对其电子特性产生重大影响。在本研究中,我们研究了多层 MoS2 肖特基势垒场效应晶体管(SBFET),通过计算器件建模强调了金属接触对器件性能的影响。我们发现,通过适当的金属和栅极电压控制,可以制造出 p 型 MoS2 SBFET。此外,我们还提出了具有非对称金属电极的伏极型多层 MoS2 SBFET,通过优化 MoS2 器件中的金属触点,该器件表现出与栅极电压相关的伏极型传输行为。通过引入双分割栅极几何结构,MoS2SBFET 还能以四种不同的配置运行:p - p、n - n、p - n 和 n - p。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信