A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant Pub Date : 2024-11-04 Epub Date: 2024-10-01 DOI:10.1016/j.molp.2024.09.013
Qianqian Zhang, Qianya Xu, Nan Zhang, Tao Zhong, Yuexian Xing, Zhou Fan, Mingzhu Yan, Mingliang Xu
{"title":"A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease.","authors":"Qianqian Zhang, Qianya Xu, Nan Zhang, Tao Zhong, Yuexian Xing, Zhou Fan, Mingzhu Yan, Mingliang Xu","doi":"10.1016/j.molp.2024.09.013","DOIUrl":null,"url":null,"abstract":"<p><p>Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1654-1671"},"PeriodicalIF":17.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.09.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.

玉米WAK-SnRK1α2-WRKY模块调节养分供应以抵御头烟粉病。
固着型生物营养体依赖于活的宿主获取养分来完成其生命周期,然而宿主限制病原体获得养分的机制在很大程度上仍不为人所知。真菌病原体 Sporisorium reilianum 会感染玉米幼苗,并在成熟期导致花序发生头疫病,而细胞壁相关激酶 ZmWAK 可提供对其的定量抗性。在这里,我们证明 S. reilianum 能迅速激活 ZmWAK 激酶的活性,该活性由并膜结构域中的第 407 个苏氨酸残基维持,使其能与 ZmSnRK1α2 (一种保守的蔗糖不发酵相关激酶 α 亚基)相互作用并使其磷酸化。活化的 ZmSnRK1α2 从细胞质转移到细胞核,在细胞核中磷酸化并破坏转录因子 ZmWRKY53 的稳定性。ZmWRKY53 丰度的降低导致参与跨膜运输和碳水化合物代谢的基因下调,从而导致 S. reilianum 在细胞凋亡期的营养饥饿。我们的研究揭示了玉米中的 WAK-SnRK1α2-WRKY53 信号模块,该模块将磷酸化级联从质膜传递到细胞核,从而赋予玉米抗头疫病的能力,对作物管理和应用具有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信