{"title":"Network pharmacology-based strategy to reveal the mechanism of pinocembrin against ovarian cancer.","authors":"Guanghui Wang, Jianxiang Cheng, Meizhen Yao, Jing Li, Ting Chen, Jia Zhang, Wensheng Du, Youguo Chen","doi":"10.1007/s00210-024-03492-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer stands as the foremost cause of mortality among gynaecological diseases globally, characterized by high morbidity and mortality. Pinocembrin, a flavonoid from natural plant sources, exhibits diverse pharmacological properties. Despite its known pharmacological activities, its specific role in ovarian cancer treatment remains scarcely reported, and its precise molecular mechanism remains elusive. This study integrates network pharmacology and molecular docking techniques to explore pinocembrin's potential mechanism in ovarian cancer treatment. The targets of pinocembrin were compiled from the several online databases. Ovarian cancer targets were identified using the GeneCards database, with common target genes determined by data aggregation. Protein-protein interactions were analysed using the STRING platform. Subsequent Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. Molecular docking assessed the binding affinity between potential targets and active compounds. Finally, target validity was verified through in vitro experiments. We identified 163 potential pinocembrin targets for ovarian cancer treatment. GO and KEGG analyses revealed pinocembrin's involvement in protein kinase activity, protein phosphorylation, protein kinase complexes and cancer pathways in ovarian cancer treatment. Molecular docking demonstrated strong binding affinity between pinocembrin and most potential target active sites. In vitro experiments suggested pinocembrin's potential to induce apoptosis in ovarian cancer cells through the AKT1-mTOR signalling pathway. This study comprehensively elucidates pinocembrin's potential targets and mechanisms against ovarian cancer, aiming to provide promising candidates for developing novel and effective alternative and/or complementary nutritional supplements for the clinical treatment of ovarian cancer.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"3803-3815"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03492-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer stands as the foremost cause of mortality among gynaecological diseases globally, characterized by high morbidity and mortality. Pinocembrin, a flavonoid from natural plant sources, exhibits diverse pharmacological properties. Despite its known pharmacological activities, its specific role in ovarian cancer treatment remains scarcely reported, and its precise molecular mechanism remains elusive. This study integrates network pharmacology and molecular docking techniques to explore pinocembrin's potential mechanism in ovarian cancer treatment. The targets of pinocembrin were compiled from the several online databases. Ovarian cancer targets were identified using the GeneCards database, with common target genes determined by data aggregation. Protein-protein interactions were analysed using the STRING platform. Subsequent Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. Molecular docking assessed the binding affinity between potential targets and active compounds. Finally, target validity was verified through in vitro experiments. We identified 163 potential pinocembrin targets for ovarian cancer treatment. GO and KEGG analyses revealed pinocembrin's involvement in protein kinase activity, protein phosphorylation, protein kinase complexes and cancer pathways in ovarian cancer treatment. Molecular docking demonstrated strong binding affinity between pinocembrin and most potential target active sites. In vitro experiments suggested pinocembrin's potential to induce apoptosis in ovarian cancer cells through the AKT1-mTOR signalling pathway. This study comprehensively elucidates pinocembrin's potential targets and mechanisms against ovarian cancer, aiming to provide promising candidates for developing novel and effective alternative and/or complementary nutritional supplements for the clinical treatment of ovarian cancer.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.